函數(shù)y=sin(x+φ)(φ>0)的部分圖象如圖所示,設P是圖象的最高點,A,B是圖象與x軸的交點,則tan∠APB   
【答案】分析:利用函數(shù)的解析式求出A,通過函數(shù)的周期求出AB,然后利用兩角和的正切函數(shù)求解即可.
解答:解:由題意作PN⊥x軸于N,由函數(shù)的解析式可知:A=1即PN=1,
設∠APN=α,∠NPB=β;
因為函數(shù)的周期T=AB==4,所以AN=1,NB=3,
所以tanα=1,tanβ=3;
所以tan∠APB=tan(α+β)===-2.
故答案為:-2.
點評:本題考查三角函數(shù)的解析式的應用,兩角和的正切函數(shù)的應用,考查分析問題解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=sin(x+
π
6
)sin(x-
π
6
)+acosx的最大值.(其中a為定值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設ω>0,函數(shù)y=sin(ωx+φ)(-π<φ<π)的圖象向左平移
π
3
個單位后,得到下面的圖象,則ω,φ的值為(  )
A、ω=1,?=
3
B、ω=2,?=
3
C、ω=1,?=-
π
3
D、ω=2,?=-
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinπxcosπx的最小正周期是
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淄博一模)已知函數(shù)y=sin(ωx+φ)(ω>0,0<φ≤
π
2
)的部分圖象如示,則φ的值為
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設ω>0,函數(shù)y=sin(ωx+
π
3
)的圖象向右平移
3
個單位后與原圖象重合,則ω的最小值是( 。
A、
3
4
B、
3
2
C、3
D、
9
4

查看答案和解析>>

同步練習冊答案