【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函數(shù)f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)證明:對一切x∈(0,+∞),都有l(wèi)nx> ﹣ 成立.
【答案】解:(Ⅰ)∵f′(x)=lnx+1, 當x∈(0, ),f′(x)<0,f(x)單調(diào)遞減,當x∈( ,+∞),f′(x)>0,f(x)單調(diào)遞增,
① ,即0<t< 時,f(x)min= ,f(x)min=f(t)=tlnt
② ,即t 時,f(x)在[t,t+1]上單調(diào)遞增,f(x)min=f(t)=tlnt,
∴
(Ⅱ)2xlnx≥﹣x2+ax﹣3,則 ,
設(shè)h(x)=2lnx+x+ ,x>0,則h′(x)= ,
①x∈(0,1),h′(x)<0,h(x)單調(diào)遞減,
②x∈(1,+∞),h′(x)>0,h(x)單調(diào)遞增,
∴h(x)min=h(1)=4,對一切x∈(0,+∞),2f(x)≥g(x)恒成立,
∴a≤4.
(Ⅲ)問題等價于證明xlnx> ,
由(Ⅰ)可知f(x)=xlnx,(x∈(0,+∞))的最小值是- ,當且僅當x= 時取到,
設(shè)m(x)=xlnx> ,則 ,
易知 ,當且僅當x=1時取到,
從而對一切x∈(0,+∞),都有都有l(wèi)nx> ﹣ 成立
【解析】(Ⅰ)求函數(shù)f(x)在某區(qū)間的最小值,先求該函數(shù)的導(dǎo)函數(shù),再判斷單調(diào)性,因為t是參數(shù),要進行分類討論;(Ⅱ)求實數(shù)a的取值范圍,2f(x)≥g(x)恒成立,就是求函數(shù)的最值問題,(Ⅲ)本題設(shè)m(x)=xlnx> ,也是求m(x)=xlnx的最值問題.
【考點精析】本題主要考查了函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣4ax+b(a>0)在區(qū)間[0,1]上有最大值1和最小值﹣2.
(1)求a,b的值;
(2)若不等式f(x)≥mx在x∈(0,+∞)上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點,PA⊥底面ABCD,PA=2. (Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以邊長為的正三角形的頂點為坐標原點,另外兩個頂點在拋物線上,過拋物線的焦點的直線過交拋物線于兩點.
(1)求拋物線的方程;
(2)求證: 為定值;
(3)求線段的中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,福建省大力推進海峽西岸經(jīng)濟區(qū)建設(shè),福州作為省會城市,在發(fā)展過程中,交通狀況一直倍受有關(guān)部門的關(guān)注,據(jù)有關(guān)統(tǒng)計數(shù)據(jù)顯示上午6點到10點,車輛通過福州市區(qū)二環(huán)路某一路段的用時y(分鐘)與車輛進入該路段的時刻t之間關(guān)系可近似地用如下函數(shù)給出:y= .求上午6點到10點,通過該路段用時最多的時刻.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ae﹣x , 若f′(x)≥2 恒成立,則a的取值范圍為( )
A.[3,+∞)
B.(0,3]
C.[﹣3,0)
D.(﹣∞,﹣3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了引導(dǎo)居民合理用電,國家決定實行合理的階梯電價,居民用電原則上以住宅為單位(一套住宅為一戶).
階梯級別 | 第一階梯 | 第二階梯 | 第三階梯 |
月用電范圍(度) | (0,210] | (210,400] |
某市隨機抽取10戶同一個月的用電情況,得到統(tǒng)計表如下:
居民用電戶編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用電量(度) | 53 | 86 | 90 | 124 | 132 | 200 | 215 | 225 | 300 | 410 |
若規(guī)定第一階梯電價每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計算A居民用電戶用電410度時應(yīng)電費多少元?
現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;
以表中抽到的10戶作為樣本估計全市的居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當時,求的單調(diào)區(qū)間;
(2)令,區(qū)間, 為自然對數(shù)的底數(shù)。
(ⅰ)若函數(shù)在區(qū)間上有兩個極值,求實數(shù)的取值范圍;
(ⅱ)設(shè)函數(shù)在區(qū)間上的兩個極值分別為和,
求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com