若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則1<t<4; ②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓;    ④若,則C表是長軸在x軸上的橢圓.
其中真命題的序號為             (把所有正確命題的序號都填上)。
② ④

試題分析:若C為橢圓,則,時焦點(diǎn)在x軸,時表示圓;若C為雙曲線,則,
點(diǎn)評:當(dāng)取不同值時可以表示圓,橢圓,雙曲線
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分) 如圖,是離心率為的橢圓,
()的左、右焦點(diǎn),直線將線段分成兩段,其長度之比為1 : 3.設(shè)上的兩個動點(diǎn),線段的中點(diǎn)在直線上,線段的中垂線與交于兩點(diǎn).

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn),使以為直徑的圓經(jīng)過點(diǎn),若存在,求出點(diǎn)坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線過點(diǎn)
(I)求拋物線的方程;
(II)已知圓心在軸上的圓過點(diǎn),且圓在點(diǎn)的切線恰是拋物線在點(diǎn)的切線,求圓的方程;
(Ⅲ)如圖,點(diǎn)軸上一點(diǎn),點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),過點(diǎn)作一條直線與拋物線交于兩點(diǎn),若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個端點(diǎn)與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于兩點(diǎn). ①若線段中點(diǎn)的
橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,雙曲線的離心率為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)已知中心在原點(diǎn)O,焦點(diǎn)在軸上的橢圓C的離心率為,點(diǎn)A,B分別是橢圓C的長軸、短軸的端點(diǎn),點(diǎn)O到直線AB的距離為。

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)E(3,0),設(shè)點(diǎn)P、Q是橢圓C上的兩個動點(diǎn),滿足EP⊥EQ,
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=2px(p>0)上有一點(diǎn)M,它的橫坐標(biāo)是3,它到焦點(diǎn)的距離是5,則拋物線方程為(  A  )
A.y2=8xB.y2=4xC.y2=3xD.y2=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線=1的離心率為e,拋物線x=2py2的焦點(diǎn)為(e,0),則p的值為(  )
A.2 B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓點(diǎn),橢圓的短半軸為半徑的圓與直線x-y+=0相切。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對稱的任意兩個不同的點(diǎn),連接PB交隨圓C于另一點(diǎn)E,證明直線AE與x軸相交于定點(diǎn)Q.

查看答案和解析>>

同步練習(xí)冊答案