某高校有甲、乙兩個數(shù)學(xué)建模興趣班.其中甲班有40人,乙班50人.現(xiàn)分析兩個班的一次考試成績,算得甲班的平均成績是90分,乙班的平均成績是81分,則該校數(shù)學(xué)建模興趣班的平均成績是
 
分.
分析:本題是一個加權(quán)平均數(shù)的問題,做出甲和乙兩個班的總分數(shù),除以兩個班的總?cè)藬?shù),就是這兩個班的平均成績.
解答:解:甲班有40人,乙班50人.現(xiàn)分析兩個班的一次考試成績,
算得甲班的平均成績是90分,
乙班的平均成績是81分,
該校數(shù)學(xué)建模興趣班的平均成績是
40×90+50×81
90
=85
分.
故答案為:85
點評:本題考查加權(quán)平均數(shù),這種問題注意要每一個數(shù)據(jù)乘以它的權(quán)重,得到所有數(shù)據(jù)之和,再除以所有數(shù)的個數(shù).這種題目是初中教材上學(xué)習(xí)的內(nèi)容.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從2003年開始,我國就通過實行高校自主招生探索人才選拔制度改革,允許部分高校拿出一定比例的招生名額,選拔哪些有特殊才能的學(xué)生.某學(xué)生參加一個高校的自主招生考試,考試分筆試和面試兩個環(huán)節(jié),筆試有A,B兩個題目,該學(xué)生答對A,B兩題的概率分別為
1
2
,
1
3
,兩題全部答對方可進入面試.面試要回答甲、乙兩個問題,該學(xué)生答對兩個問題的概率均為
1
2
,至少答對一題即可被錄取.(假設(shè)每個環(huán)節(jié)的每個問題回答正確與否是相對獨立的).
(I)求該學(xué)生被學(xué)校錄取的概率;?
(II)設(shè)該學(xué)生答對題目的個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)某高校組織的自主招生考試,共有1000名同學(xué)參加筆試,成績均介于60分到100分之間,從中隨機抽取50名同學(xué)的成績進行統(tǒng)計,將統(tǒng)計結(jié)果按如下方式分為4組:第1組[60,70),第2組[70,80),第3組[80,90),第4組[90,100].如圖是按上述分組方法得到的頻率分布直方圖,且筆試成績在85分(含85分)以上的同學(xué)有面試資格.
(Ⅰ)估計所有參加筆試的1000名同學(xué)中,有面試資格的人數(shù);
(Ⅱ)已知某中學(xué)有甲、乙兩位同學(xué)取得面試資格,且甲的筆試比乙的高;面試時,要求每人回答兩個問題,假設(shè)甲、乙兩人對每一個問題答對的概率均為
12
;若甲答對題的個數(shù)不少于乙,則甲比乙優(yōu)先獲得高考加分資格.求甲比乙優(yōu)先獲得高考加分資格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東臨沂高三5月高考模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

某高校組織的自主招生考試,共有1000名同學(xué)參加筆試,成績均介于60分到100分之間,從中隨機抽取50名同學(xué)的成績進行統(tǒng)計,將統(tǒng)計結(jié)果按如下方式分為4組:第1組[60,70),第2組[70,80),第3組[80,90),第4組[90,100].如圖是按上述分組方法得到的頻率分布直方圖,且筆試成績在85分(含85分)以上的同學(xué)有面試資格.

(Ⅰ)估計所有參加筆試的1000名同學(xué)中,有面試資格的人數(shù);

(Ⅱ)已知某中學(xué)有甲、乙兩位同學(xué)取得面試資格,且甲的筆試比乙的高;面試時,要求每人回答兩個問題,假設(shè)甲、乙兩人對每一個問題答對的概率均為;若甲答對題的個數(shù)不少于乙,則甲比乙優(yōu)先獲得高考加分資格.求甲比乙優(yōu)先獲得高考加分資格的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校組織的自主招生考試,共有1000名同學(xué)參加筆試,成績均介于60分到100分之間,從中隨機抽取50名同學(xué)的成績進行統(tǒng)計,將統(tǒng)計結(jié)果按如下方式分為4組:第1組[60,70),第2組[70,80),第3組[80,90),第4組[90,100].如圖是按上述分組方法得到的頻率分布直方圖,且筆試成績在85分(含85分)以上的同學(xué)有面試資格.

(Ⅰ)估計所有參加筆試的1000名同學(xué)中,有面試資格的人數(shù);

(Ⅱ)已知某中學(xué)有甲、乙兩位同學(xué)取得面試資格,且甲的筆試比乙的高;面試時,要求每人回答兩個問題,假設(shè)甲、乙兩人對每一個問題答對的概率均為   ;

若甲答對題的個數(shù)不少于乙,則甲比乙優(yōu)先獲得高考加分資格.求甲比乙優(yōu)先獲得高考加分資格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省臨沂市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

某高校組織的自主招生考試,共有1000名同學(xué)參加筆試,成績均介于60分到100分之間,從中隨機抽取50名同學(xué)的成績進行統(tǒng)計,將統(tǒng)計結(jié)果按如下方式分為4組:第1組[60,70),第2組[70,80),第3組[80,90),第4組[90,100].如圖是按上述分組方法得到的頻率分布直方圖,且筆試成績在85分(含85分)以上的同學(xué)有面試資格.
(Ⅰ)估計所有參加筆試的1000名同學(xué)中,有面試資格的人數(shù);
(Ⅱ)已知某中學(xué)有甲、乙兩位同學(xué)取得面試資格,且甲的筆試比乙的高;面試時,要求每人回答兩個問題,假設(shè)甲、乙兩人對每一個問題答對的概率均為;若甲答對題的個數(shù)不少于乙,則甲比乙優(yōu)先獲得高考加分資格.求甲比乙優(yōu)先獲得高考加分資格的概率.

查看答案和解析>>

同步練習(xí)冊答案