分析 函數f(x)對一切實數a、b滿足f(a+b)=f(a)•f(b),f(1)=2,可得f(n+1)=f(n)f(1)=2f(n),利用等比數列的通項公式可得f(n),即可得出an及其前n項和.
解答 解:∵函數f(x)對一切實數a、b滿足f(a+b)=f(a)•f(b),f(1)=2,
∴f(n+1)=f(n)f(1)=2f(n),
∴數列{f(n)}是等比數列,首項為2,公比為2.
∴f(n)=2n.
∴數列{an}的通項an=$\frac{{{f^2}(n)+f(2n)}}{f(2n-1)}$=$\frac{{2}^{2n}+{2}^{2n}}{{2}^{2n-1}}$=4.
∴數列{an}的前n項和=4n.
故答案為:4n.
點評 本題考查了等比數列的通項公式,考查了變形能力,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 40 | B. | 48 | C. | 60 | D. | 68 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若f(x)∈M${\;}_{{a}_{1}}$,g(x)∈M${\;}_{{a}_{2}}$,則f(x)•g(x)∈M${\;}_{{a}_{1}{a}_{2}}$ | |
B. | 若f(x)∈M${\;}_{{a}_{1}}$,g(x)∈M${\;}_{{a}_{2}}$,且g(x)≠0,則$\frac{f(x)}{g(x)}$∈M${\;}_{\frac{{a}_{1}}{{a}_{2}}}$ | |
C. | 若f(x)∈M${\;}_{{a}_{1}}$,g(x)∈M${\;}_{{a}_{2}}$,則f(x)+g(x)∈M${\;}_{{a}_{1}+{a}_{2}}$ | |
D. | 若f(x)∈M${\;}_{{a}_{1}}$,g(x)∈M${\;}_{{a}_{2}}$,且a1>a2,則f(x)-g(x)∈M${\;}_{{a}_{1}-{a}_{2}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | $\frac{15}{4}$ | C. | $\frac{65}{4}$ | D. | 16 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -4 | B. | -$\sqrt{3}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com