已知a,b,c∈R,且三次方程f(x)=x3-ax2+bx-c=0有三個實根x1,x2,x3
(1)類比一元二次方程根與系數(shù)的關(guān)系,寫出此方程根與系數(shù)的關(guān)系;
(2)若a∈Z,b∈Z且|b|<2,f(x)在x=α,x=β處取得極值且-1<α<0<β<1,試求此方程三個根兩兩不等時c的取值范圍.
分析:(1)由已知,x3+ax2-bx+c=(x-x1)(x-x2)(x-x3),比較兩邊系數(shù),即得結(jié)果;
(2)由已知f′(x)=3x2-2ax+b=0有兩個不等的實根α,β,因為-1<α<0<β<1,根據(jù)實根分布,列出關(guān)于c的不等關(guān)系,解之得此方程三個根兩兩不等時c的取值范圍.
解答:解:(1)由已知,得x3-ax2+bx-c=(x-x1)(x-x2)(x-x3),比較兩邊系數(shù),
得a=x1+x2+x3,b=x1x2+x2x3+x3x1,c=x1x2x3.          …(4分)
(2)令f(x)=x3-ax2+bx-c,要f(x)=0有三個不等的實數(shù)根,則函數(shù)f(x)有一個極大值和一個極小值,且極大值大于0,極小值小于0.  …(5分)
由已知,得f′(x)=3x2-2ax+b=0有兩個不等的實根α,β,
∵-1<α<0<β<1,
f(-1)=3+2a+b>0  (1)
f(0)=b<0 (2)
f(1)=3-2a+b>0(3)
得-3<b<0.…(6分)
又|b|<2,b∈Z,∴b=-1,將b=-1代入(1)(3),有-1<a<1,又a∈Z,∴a=0.
∴f(x)=x3-x-c,f′(x)=3x2-1,…(8分)
α=-
3
3
,β=
3
3
,且f(x)在x=-
3
3
處取得極大值,在x=
3
3
處取得極小值…(10分)      
故f(x)=0要有三個不等的實數(shù)根,
則必須
f(-
3
3
)=(-
3
3
)
3
-(-
3
3
)-c>0
f(
3
3
)=(
3
3
)
3
-
3
3
-c<0
…(12分)
c>-
2
3
9
c<
2
3
9
,
解得-
2
3
9
<c<
2
3
9
.                                         …(14分)
點評:本小題主要考查類比推理、函數(shù)在某點取得極值的條件、一元二次方程的根的分布與系數(shù)的關(guān)系、不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

50、已知a,b,c∈R,證明:a2+4b2+9c2≥2ab+3ac+6bc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:
(1)已知x,y都是正實數(shù),求證:x3+y3≥x2y+xy2,
(2)已知a,b,c∈R+,且a+b+c=1,求證:a2+b2+c2 ≥ 
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R+且滿足a+2b+3c=1,則
1
a
+
1
2b
+
1
3c
的最小值為
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a,b,c∈R,且a+b+c=1,求證:a2+b2+c2
1
3
;
(2)a,b,c為互不相等的正數(shù),且abc=1,求證:
1
a
+
1
b
+
1
c
a
+
b
+
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R,且a>b,那么下列不等式中成立的是( 。

查看答案和解析>>

同步練習(xí)冊答案