【題目】如圖,等邊三角形ABC的中線AF與中位線DE相交于G,已知AEDAEDDE旋轉(zhuǎn)過程中的一個圖形,給出以下四個命題:①AC平面ADF;②平面AGF平面BCED;③動點A′在平面ABC上的射影在線段AF上;④異面直線AEBD不可能垂直.其中正確命題的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根據(jù)△AEDDE旋轉(zhuǎn)過程中,對圖形中命題涉及到的平行垂直關(guān)系進行判斷,判斷每個命題的真假

解:由題意知,AC∥DF,AC平面A′DF,DF平面A′DF,∴AC∥平面A′DF,①正確;

等邊三角形ABC的中線AF與中位線DE相交于G所以,且,所以平面,平面,故有平面A′GF⊥平面BCED,②正確;

平面A′GF⊥平面BCED平面A′GF平面BCED ,故過A′作AF的垂線垂直于平面ABC,所以A′在平面ABC上的射影在線段AF上,正確;

當(A′E)2+EF2=(A′F)2時,異面直線A′EBD垂直,錯誤;

綜上,正確的命題序號是①②③.

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且
(1)證明:sinAsinB=sinC;
(2)若 ,求tanB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+3a+2.

(1)若函數(shù)f(x)的值域為[0,+∞),求a的值;

(2)若函數(shù)f(x)的函數(shù)值均為非負實數(shù),求g(a)=2-a|a+3|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)的圖象關(guān)于直線x=-對稱,且.

(1)求實數(shù)a,b的值;

(2)求函數(shù)在區(qū)間[-3,2]上的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù). f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(2-a)x-2(1+ln x)+a,若函數(shù)f(x)在區(qū)間上無零點,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右焦點為,且點在橢圓上,為坐標原點.

(1)求橢圓的標準方程;

(2)設過定點的直線與橢圓交于不同的兩點、,且,求直線的斜率的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標準x(噸),估計x的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C過點M(2,0),且右焦點為F(1,0),過F的直線l與橢圓C相交于A、B兩點.設點P(4,3),記PA、PB的斜率分別為k1k2

(1)求橢圓C的方程;

(2)如果直線l的斜率等于-1,求出k1k2的值;

(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.

查看答案和解析>>

同步練習冊答案