【題目】已知函數(shù)f(x)=﹣x2+2|x﹣a|,x∈R.
(1)若函數(shù)f(x)為偶函數(shù),求實數(shù)a的值;
(2)當x=﹣1時,函數(shù)f(x)在x=﹣1取得最大值,求實數(shù)a的取值范圍.
(3)若函數(shù)f(x)有三個零點,求實數(shù)a的取值范圍.

【答案】
(1)解:任取x∈R,則f(﹣x)=f(x)恒成立,

即﹣(﹣x)2+2|﹣x﹣a|=﹣x2+2|x﹣a|恒成立,

∴|x﹣a|=|x+a|恒成立,

兩邊平方得:x2﹣2ax+a2=x2+2ax+a2,

∴a=0;


(2)解: ,因為函數(shù)y=f(x)在x=﹣1時取得最大值,

當a≥1時,必須f(﹣1)≥f(a),即1+2a≥﹣a2+2a﹣2a,即(a+1)2≥0,所以a≥1適合題意;

當﹣1<a<1時,必須f(﹣1)≥f(1),即1+2a≥1﹣2a,即a≥0,所以0≤a<1適合題意;

當a≤﹣1時,因為f(﹣1)<f(1),不合題意,

綜上,實數(shù)a的取值范圍是[0,+∞).


(3)解: ,

, ,

當△1=0時, ,此時函數(shù) 有三個零點1, ;

當△2=0時, ,此時函數(shù) 有三個零點 ;

當△1>0,△2>0時,即 時,方程﹣x2+2x﹣2a=0的兩根為 ,

方程﹣x2﹣2x+2a=0的兩根為 ,

因為 ,所以 ,解得a=0,

或者 ,此時無解,

綜上得 或0.


【解析】(1)由偶函數(shù)的定義,可得f(﹣x)=f(x),化簡整理可得a=0;(2)去絕對值,運用分段函數(shù)的形式,寫出f(x),討論當a≥1時,當﹣1<a<1時,當a≤﹣1時,考慮最大值,解不等式即可得到a的范圍;(3)去絕對值,運用分段函數(shù)的形式,寫出f(x),討論兩個二次函數(shù)的判別式,等于0或大于0,解方程(或不等式)即可得到a的值.
【考點精析】認真審題,首先需要了解函數(shù)的最值及其幾何意義(利用二次函數(shù)的性質(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調性的判斷函數(shù)的最大(小)值),還要掌握二次函數(shù)的性質(增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點G(5,4),圓C1:(x﹣1)2+(y﹣4)2=25,過點G的動直線l與圓C1 , 相交于兩點E、F,線段EF的中點為C. (Ⅰ)求點C的軌跡C2的方程;
(Ⅱ)若過點A(1,0)的直線l1:kx﹣y﹣k=0,與C2相交于兩點P、Q,線段PQ的中點為M,l1與l2:x+2y+2=0的交點為N,求證:|AM||AN|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為四棱錐P﹣ABCD的表面展開圖,四邊形ABCD為矩形, ,AD=1.已知頂點P在底面ABCD上的射影為點A,四棱錐的高為 ,則在四棱錐P﹣ABCD中,PC與平面ABCD所成角的正切值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,過AD的平面分別交PB,PC于M,N兩點.

(1)求證:MN∥BC;
(2)若M,N分別為PB,PC的中點,
①求證:PB⊥DN;
②求二面角P﹣DN﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|2x≥16},B={x|log2x≥a}.
(1)當a=1時,求A∩B;
(2)若A是B的子集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長方體ABCD﹣A1B1C1D1中,AA1=2,BC= ,E為CC1的中點.

(1)求證:平面A1BE⊥平面B1CD;
(2)平面A1BE與底面A1B1C1D1所成的銳二面角的大小為θ,當 時,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐A﹣BCDE中,底面BCDE為矩形,側面ABC⊥底面BCDE,BC=2,CD= ,AB=AC.

(1)證明:AD⊥CE;
(2)設CE與平面ABE所成的角為45°,求二面角C﹣AD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O:x2+y2=2,直線l:y=kx﹣2.
(1)若直線l與圓O交于不同的兩點A,B,當 時,求k的值;
(2)若 是直線l上的動點,過P作圓O的兩條切線PC、PD,切點為C、D,探究:直線CD是否過定點?若過定點則求出該定點,若不存在則說明理由;
(3)若EF、GH為圓O:x2+y2=2的兩條相互垂直的弦,垂足為 ,求四邊形EGFH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費用為560+48x(單位:元).
(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=
(1)寫出樓房平均綜合費用y關于建造層數(shù)x的函數(shù)關系式;
(2)該樓房應建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

查看答案和解析>>

同步練習冊答案