4.圓x2+y2=1與圓(x-2)2+(y-2)2=5的位置關(guān)系為( 。
A.內(nèi)切B.相交C.外切D.相離

分析 根據(jù)兩圓的圓心距大于半徑之差,而小于半徑之和,可得兩圓相交.

解答 解:兩圓x2+y2=1與圓(x-2)2+(y-2)2=5的圓心距為2$\sqrt{2}$,
它大于半徑之差$\sqrt{5}$-1,而小于半徑之和$\sqrt{5}$+1,
故兩圓相交,
故選B.

點(diǎn)評 本題主要考查圓和圓的位置關(guān)系的判定,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)$z=\frac{i}{1-i}$的共軛復(fù)數(shù)的模為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=|x+1|-m|x-2|.
(Ⅰ)若m=1,求函數(shù)f(x)的值域;
(Ⅱ)若m=-1,求不等式f(x)>3x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機(jī)抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計(jì)出這些試卷總分,由總分得到如下的頻率分布直方圖.
(1)求這100份數(shù)學(xué)試卷的樣本平均分$\overline x$和樣本方差s2
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)由直方圖可以認(rèn)為,這批學(xué)生的數(shù)學(xué)總分Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline x$,σ2近似為樣本方差s2
①利用該正態(tài)分布,求P(81<z<119);
②記X表示2400名學(xué)生的數(shù)學(xué)總分位于區(qū)間(81,119)的人數(shù),利用①的結(jié)果,求EX(用樣本的分布區(qū)估計(jì)總體的分布).
附:$\sqrt{366}$≈19,$\sqrt{326}$≈18,若Z=~N(μ,2),則P(μ-σ2),則P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC是等邊三角形,D在BC的延長線上,且CD=2,${S_{△ABD}}=6\sqrt{3}$.
(Ⅰ)求AB的長;
(Ⅱ)求sin∠CAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要非充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題中不正確的是(  )
A.如果平面α⊥平面 γ,平面β⊥平面 γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面 β,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β
D.如果平面α⊥平面 β,過α內(nèi)任意一點(diǎn)作交線的垂線,那么此垂線必垂直于β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短半軸長為1,離心率為$\frac{\sqrt{3}}{2}$
(1)求橢圓C的方程
(2)直線l與橢圓C有唯一公共點(diǎn)M,設(shè)直線l的斜率為k,M在橢圓C上移動時,作OH⊥l于H(O為坐標(biāo)原點(diǎn)),當(dāng)|OH|=$\frac{4}{5}$|OM|時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.拋物線 M:y2=2px(p>0)與橢圓 $N:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$有相同的焦點(diǎn)F,拋物線M與 橢圓N交于A,B,若F,A,B共線,則橢圓N的離心率等于$\sqrt{2}$-1.

查看答案和解析>>

同步練習(xí)冊答案