數(shù)列{an}的通項(xiàng)公式為an=n2+kn+2,有
an+1an,n≥5
an+1an,1≤n≤4
成立,則k的取值范圍為
 
考點(diǎn):數(shù)列的函數(shù)特性,數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:
an+1an,n≥5
an+1an,1≤n≤4
成立,可知a5為最小項(xiàng).利用二次函數(shù)的單調(diào)性可得4.5<-
k
2
<5.5
,解出即可.
解答: 解:由
an+1an,n≥5
an+1an,1≤n≤4
成立,可知a5為最小項(xiàng).
4.5<-
k
2
<5.5

解得-11<k<-9,
∴k的取值范圍為(-11,-9).
故答案為:(-11,-9).
點(diǎn)評(píng):本題考查了分段函數(shù)的性質(zhì)、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市教育局為了了解高三學(xué)生體育達(dá)標(biāo)情況,對(duì)全市高三學(xué)生進(jìn)行了體能測(cè)試,經(jīng)分析,全市學(xué)生體能測(cè)試成績(jī)X服從正態(tài)分布N(80,σ2)(滿分為100分),已知P(X<75)=0.3,P(X≥95)=0.1,現(xiàn)從該市高三學(xué)生隨機(jī)抽取三位同學(xué).
(1)求抽到的三位同學(xué)該次體能測(cè)試成績(jī)?cè)趨^(qū)間[80,85),[85,95),[95,100]各有一位同學(xué)的概率;
(2)記抽到的三位同學(xué)該次體能測(cè)試成績(jī)?cè)趨^(qū)間[75,85]的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(2,0),B(0,2),C(cosα,sinα)(0<α<π).
(1)若|
OA
+
OC
|=
7
(O為坐標(biāo)原點(diǎn)),求
OB
OC
的夾角;
(2)若
AC
BC
,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù) M>0,都有|f(x)|≤M 成立,則稱(chēng)f(x)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)f(x)的上界.已知函數(shù)f(x)=x2+2ax+2.
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)在(-∞,0]上的值域,判斷函數(shù)f(x)在(-∞,0]上是否為有界函數(shù),并說(shuō)明理由;
(2)若函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)a.b.c均為正實(shí)數(shù)時(shí),給出以下三個(gè)不等式:
a2-ab+b2
b2-bc+c2
+
c2-ac+a2

a2-ab+b2
b2-bc+c2
+
c2+a2
;
a2-ab+b2
b2+c2
+
c2+a2

其中,一定成立的不等式的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定區(qū)間D,對(duì)于函數(shù)d=2及任意的f(x)、g(x)(其中x1>x2),若不等式f(x1)-g(x1)>f(x2)-g(x2)恒成立,則稱(chēng)函數(shù)f(x)是相對(duì)于函數(shù)g(x)在區(qū)間上的“漸進(jìn)函數(shù)”,已知=f(x)=x2+2ax是相對(duì)于函數(shù)g(x)=x+3在區(qū)間[a,a+2]上的“漸進(jìn)函數(shù)”,則實(shí)數(shù)l的取值范圍是( 。
A、a>
1
4
B、a≤
1
4
C、a≥-
3
4
D、a≤-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga[(
1
a
-2)x+1]>0
在[1,2]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意n∈N+,關(guān)于x的不等式x2+
1
2
x-(
1
2
n≥0在(-∞,λ]上恒成立,則實(shí)數(shù)λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知AB=4,AC=6,∠BAC=60°,點(diǎn)D,E分別在邊AB,AC上,且
AB
=2
AD
,
AC
=3
AE
,點(diǎn)F為DE中點(diǎn),則
BF
DE
的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案