已知f(x)=logax(a>0且a≠1),如果對(duì)于任意的x∈都有|f(x)|≤1成立,試求a的取值范圍.
解:當(dāng)a>1時(shí),f(x)=logax在上單調(diào)遞增,要使x∈都有|f(x)|≤1成立,則有解得a≥3.
∴此時(shí)a的取值范圍是a≥3.
當(dāng)0<a<1時(shí),f(x)=logax在 上單調(diào)遞減,
要使x∈都有|f(x)|≤1成立,則有解得0<a≤.
∴此時(shí),a的取值范圍是0<a≤.
綜上可知,a的取值范圍是∪[3,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
關(guān)于x的二次方程(m+3)x2-4mx+2m-1=0的兩根異號(hào),且負(fù)根的絕對(duì)值比正根大,那么實(shí)數(shù)m的取值范圍是( )
A.-3<m<0 B.0<m<3
C.m<-3或m>0 D.m<0或m>3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=3x-.
(1)若f(x)=2,求x的值;
(2)判斷x>0時(shí),f(x)的單調(diào)性;
(3)若3tf(2t)+mf(t)≥0對(duì)于t∈恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=loga|x|在(0,+∞)上單調(diào)遞增,則( )
A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)
C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
函數(shù)f(x)=-|x-5|+2x-1的零點(diǎn)所在的區(qū)間是( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
關(guān)于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(x)與g(x)是定義在R上的兩個(gè)可導(dǎo)函數(shù),若f(x),g(x)滿(mǎn)足f′(x)=g′(x),則f(x)與g(x)滿(mǎn)足( )
A.f(x)=g(x) B.f(x)=g(x)=0
C.f(x)-g(x)為常數(shù)函數(shù) D.f(x)+g(x)為常數(shù)函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=·ex-f(0)·x+x2(e是自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)的解析式和單調(diào)區(qū)間;
(2)若函數(shù)g(x)=x2+a與函數(shù)f(x)的圖像在區(qū)間[-1,2]上恰有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com