【題目】已知函數(shù)處的切線的斜率為1.

(1)如果常數(shù),求函數(shù)在區(qū)間上的最大值;

(2)對(duì)于,如果方程上有且只有一個(gè)解,求的值.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得,得到,進(jìn)而可得導(dǎo)函數(shù)零點(diǎn),分析導(dǎo)函數(shù)符號(hào)變化規(guī)律可得函數(shù)單調(diào)性,最后根據(jù)k與e大小關(guān)系討論單調(diào)性,進(jìn)而確定最大值(2)變量分離得,利用導(dǎo)數(shù)研究圖像,根據(jù)數(shù)形結(jié)合可得時(shí)有且只有一個(gè)解,即得的值

試題解析:解:(1)由,因?yàn)?/span>,所以,從而

所以,令.所以當(dāng)時(shí), ,函數(shù)單調(diào)遞增;當(dāng)時(shí), ,函數(shù)單調(diào)遞減.

因此如果,則函數(shù)的最大值為;

如果,則函數(shù)的最大值為

(2)因?yàn)?/span> ,令,則方程上有且只有一個(gè)解等價(jià)于函數(shù)上有且只有一個(gè)零點(diǎn).

因?yàn)?/span>,令,則(舍去),,所以當(dāng)時(shí), , 單調(diào)遞減;當(dāng)時(shí), 單調(diào)遞增.

因此時(shí)取到最小值,由題意知,從而有,又,所以,因?yàn)?/span>,

所以,令,則當(dāng)時(shí)單調(diào)遞增,且,所以,由此可得

(解法二)由

設(shè),則 ,由于單調(diào)遞減且,所以時(shí)單調(diào)遞增, 時(shí)單調(diào)遞減

方程上有且只有一個(gè)解等價(jià)于。故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓關(guān)于直線對(duì)稱的圓為.

(1)求圓的方程;

(2)過(guò)點(diǎn)作直線與圓交于兩點(diǎn), 是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得在平行四邊形?若存在,求出所有滿足條件的直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】采用系統(tǒng)抽樣方法從960人中抽取32人做問(wèn)卷調(diào)查,為此將他們隨即編號(hào)為1,2…960,分組后在第一組采用簡(jiǎn)單隨機(jī)抽樣的方法抽到的號(hào)碼為5,抽到的32人中,編號(hào)落入?yún)^(qū)間[1,450]的人做問(wèn)卷A,編號(hào)落入?yún)^(qū)間[451,750]的人做問(wèn)卷B,其余的人做問(wèn)卷C,則抽到的32人中,做問(wèn)卷C的人數(shù)為(
A.15
B.10
C.9
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x3﹣2ax2+3x(x∈R).
(1)若a=1,點(diǎn)P為曲線y=f(x)上的一個(gè)動(dòng)點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時(shí)的切線方程;
(2)若函數(shù)y=f(x)在(0,+∞)上為單調(diào)增函數(shù),試求滿足條件的最大整數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=m﹣
(1)若f(x)是R上的奇函數(shù),求m的值
(2)用定義證明f(x)在R上單調(diào)遞增
(3)若f(x)值域?yàn)镈,且D[﹣3,1],求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a=2時(shí),求f(x)在x∈[0,1]的最大值;
(2)當(dāng)0<a<1,f(x)在x∈[0,1]上的最大值和最小值之和為a,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y= x與拋物線y= x2﹣4交于A,B兩點(diǎn),線段AB的垂直平分線與直線y=﹣5交于Q點(diǎn),當(dāng)P為拋物線上位于線段AB下方(含A,B)的動(dòng)點(diǎn)時(shí),則△OPQ面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:
(1)命題“若 ,則tanα=1”的逆否命題為假命題;
(2)命題p:x∈R,sinx≤1.則¬p:x0∈R,使sinx0>1;
(3)“ ”是“函數(shù)y=sin(2x+)為偶函數(shù)”的充要條件;
(4)命題p:“x0∈R,使 ”;命題q:“若sinα>sinβ,則α>β”,那么(¬p)∧q為真命題.
其中正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是等比數(shù)列,且a2013+a2015= dx,則a2014(a2012+2a2014+a2016)的值為(
A.π2
B.2π
C.π
D.4π2

查看答案和解析>>

同步練習(xí)冊(cè)答案