已知函數(shù)f(x)=ln
x+1
x-1

(Ⅰ)求函數(shù)的定義域,并證明f(x)=ln
x+1
x-1
在定義域上是奇函數(shù);
(Ⅱ)對于x∈[2,6]f(x)=ln
x+1
x-1
>ln
m
(x-1)(7-x)
恒成立,求實數(shù)m的取值范圍.
(Ⅰ)由
x+1
x-1
>0
,解得x<-1或x>1,
∴函數(shù)的定義域為(-∞,-1)∪(1,+∞)
當x∈(-∞,-1)∪(1,+∞)時,
f(-x)=ln
-x+1
-x-1
=ln
x-1
x+1
=ln(
x+1
x-1
)-1=-ln
x+1
x-1
=-f(x)

f(x)=ln
x+1
x-1
在定義域上是奇函數(shù).
(Ⅱ)由x∈[2,6]時,f(x)=ln
x+1
x-1
>ln
m
(x-1)(7-x)
恒成立,
x+1
x-1
m
(x-1)(7-x)
>0,∵x∈[2,6]

∴0<m<(x+1)(7-x)在x∈[2,6]成立
令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],
由二次函數(shù)的性質可知x∈[2,3]時函數(shù)單調遞增,x∈[3,6]時函數(shù)單調遞減,
x∈[2,6]時,g(x)min=g(6)=7..
∴0<m<7.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實數(shù)a,b的值:
(2)當a<3時,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達式和切線l的方程;
(2)當x∈[
1
e
,e]
時(其中e=2.71828…),不等式f(x)<k恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點的橫坐標為1.
(1)求直線l的方程及a的值;
(2)當k>0時,試討論方程f(1+x2)-g(x)=k的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調性;
(2)設f(x)有兩個極值點x1,x2,若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實數(shù),x∈R,a∈R.
(1)當1<a<2時,若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點的個數(shù).

查看答案和解析>>

同步練習冊答案