如圖,在三棱柱中,側(cè)棱底面,,的中點(diǎn),.

(Ⅰ)求證://平面;
(Ⅱ)設(shè),求四棱錐的體積.
(Ⅰ)詳見解析;(Ⅱ)體積為3.

試題分析:(Ⅰ)為了證明//平面,需要在平面內(nèi)找一條與平行的直線,而要找這條直線一般通過作過且與平面相交的平面來找.在本題中聯(lián)系到中點(diǎn),故連結(jié),這樣便得一平面,接下來只需證與平面和平面的交線平行即可.

(Ⅱ)底面為一直角梯形,故易得其面積,本題的關(guān)鍵是求出點(diǎn)B到平面的距離.由于平面,所以易得平面平面.平面平面.根據(jù)兩平面垂直的性質(zhì)定理知,只需過B作交線AC的垂線即可得點(diǎn)B到平面的距離,從而求出體積.
試題解析:(Ⅰ)連接,設(shè)相交于點(diǎn),連接,

∵ 四邊形是平行四邊形,
∴點(diǎn)的中點(diǎn).
的中點(diǎn),∴為△的中位線,

平面,平面,
平面.          6分
(Ⅱ) ∵平面,平面,
∴ 平面平面,且平面平面
,垂足為,則平面
,
在Rt△中,,
∴四棱錐的體積
 12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面是菱形,,的中點(diǎn),點(diǎn)在側(cè)棱上.

(1)求證:⊥平面
(2)若的中點(diǎn),求證://平面
(3)若,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正三棱錐的底面邊長為,側(cè)棱長為,為棱的中點(diǎn).

(1)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)求該三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若正方體的外接球的體積為,則球心到正方體的一個(gè)面的距離為(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若將邊長為的正方形繞其一條邊所在直線旋轉(zhuǎn)一周,則所形成圓柱的體積等于         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)P在正方體的面對角線上運(yùn)動,則下列四個(gè)命題:

①三棱錐的體積不變;
∥平面;

④平面平面.
其中正確的命題序號是             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若圓錐的側(cè)面積為,底面積為,則該圓錐的母線長為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知空間4個(gè)球,它們的半徑均為2,每個(gè)球都與其他三個(gè)球外切,另有一個(gè)小球與這4個(gè)球都外切,則這個(gè)小球的半徑為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是球的直徑上一點(diǎn),,平面,為垂足,截球所得截面的面積為,則球的表面積為_______。

查看答案和解析>>

同步練習(xí)冊答案