對于不重合的兩個平面α與β,給定下列條件:
①存在平面γ,使得α、β都平行于γ;
②存在平面γ,使得α、β都垂直于γ;
③α內(nèi)有不共線的三點到β的距離相等;
④存在異面直線l,m,使得l//α,l//β,m//α,m//β;
A.1個B.2個C.3個D.4個
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,斜三棱柱ABC-A1B1C1的側(cè)面AA1C1C是面積為的菱形,∠ACC1為銳角,側(cè)面ABB1A1⊥側(cè)面AA1C1C,且A1B=AB=AC=1.

(1)求證:AA1⊥BC1;
(2) 求三棱錐A1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若將下面的展開圖恢復(fù)成正方體,則的度數(shù)為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(1)求證:AE//平面DCF;
(2)當AB的長為何值時,二面角A-EF-C的大小為.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,在四棱錐中,底面,
,的中點.
(Ⅰ)求和平面所成的角的大小;
(Ⅱ)證明平面;
(Ⅲ)求二面角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

必做題, 本小題10分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
在三棱錐ABCD中,平面DBC⊥平面ABC,△ABC為正三角形, AC=2,DC=DB=,
(1)求DC與AB所成角的余弦值;
(2)在平面ABD上求一點P,使得CP⊥平面AB              D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

三棱錐,,,分別為的中點,上一點,則的最小值是                   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,△PAB所在的平面α和四邊形ABCD所在
的平面β互相垂直,且,AD=4,
BC=8,AB=6,若
則點P在平面內(nèi)的軌跡是          (      )
A.圓的一部分B.橢圓的一部分
C.雙曲線的一部分D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是異面直線,,,且,則所成的角是( )
                                             

查看答案和解析>>

同步練習冊答案