分析 通過分組法求和可知Sn=$\frac{4}{3}$(2n-1)(2n-$\frac{1}{2}$),進(jìn)而裂項(xiàng)可知$\frac{{2}^{n}}{{S}_{n}}$=$\frac{3}{2}$•($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$),并項(xiàng)相加即得結(jié)論.
解答 解:∵an=4n-2n,
∴Sn=$\frac{4(1-{4}^{n})}{1-4}$-$\frac{2(1-{2}^{n})}{1-2}$=$\frac{1}{3}•$4n+1-2n+1+$\frac{2}{3}$=$\frac{4}{3}$(2n-1)(2n-$\frac{1}{2}$),
∴$\frac{{2}^{n}}{{S}_{n}}$=$\frac{{2}^{n}}{\frac{4}{3}({2}^{n}-1)({2}^{n}-\frac{1}{2})}$=$\frac{3}{2}$•$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{3}{2}$•($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$),
∴Tn=$\frac{3}{2}$•(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{7}$+…+$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$)
=$\frac{3}{2}$•(1-$\frac{1}{{2}^{n+1}-1}$)
=$\frac{3}{2}$•$\frac{{2}^{n+1}-2}{{2}^{n+1}-1}$,
故答案為:$\frac{3}{2}$•$\frac{{2}^{n+1}-2}{{2}^{n+1}-1}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),對(duì)表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x<1} | B. | {x|x<1} | C. | {x|0<x≤1} | D. | {x|x≤1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若f(x1)=f(x2),則x1-x2=kπ,k∈Z | |
B. | f(x)的圖象關(guān)于點(diǎn)($-\frac{3}{8}π$,0)對(duì)稱 | |
C. | f(x)的圖象關(guān)于直線$x=\frac{5}{8}π$對(duì)稱 | |
D. | f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度后得$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com