已知復(fù)數(shù)
a+i
1-2i
•i2016(i是虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)a的值為( 。
A、2B、2C、1D、-1
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義即可得出.
解答: 解:∵i4=1,∴i2006=i2004+2=i2=-1.
∴復(fù)數(shù)
a+i
1-2i
•i2016=
-(a+i)(1+2i)
(1-2i)(1+2i)
=
-[a-2+(1+2a)i]
5
=
2-a
5
-
1+2a
5
i
為純虛數(shù),
2-a
5
=0,
-(1+2a)
5
≠0.
解得a=2.
故選:A.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin
π
3
sin(x+
π
12
)cos(x+
π
12
)-sin
π
6
cos(2x+
π
6
).
(1)求函數(shù)f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)若函數(shù)f(x)(x>0)的圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,所得的圖象與直線y=
11
13
交點(diǎn)的橫坐標(biāo)由小到大依次是x1,x2,…,xn,求數(shù)列{xn}的前200項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α終邊上一點(diǎn)P的坐標(biāo)是(2sin3,-2cos3),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=2+i,若z2+ai+b=1+i,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|-1≤2x+1≤3},B={x|x(x-2)≤0},則A∩B=(  )
A、{x|-1≤x<0}
B、{x|0<x≤1}
C、{x|0≤x≤2}
D、{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-4x-12<0},B={x|log2(x-1)<0},則A∩B=(  )
A、{x|x<6}
B、{x|1<x<2}
C、{x|-6<x<2}
D、{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x|-1<x<3},B={x|2<x<4},則集合A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐的母線長(zhǎng)為3cm,底面半徑為1cm,圓錐頂點(diǎn)為P,底面圓周上有一點(diǎn)A,由A點(diǎn)出發(fā)繞圓錐側(cè)面一周.
(1)回到A點(diǎn)的最短距離為多少?
(2)到達(dá)AP中點(diǎn)的最短距離為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A、B兩位同學(xué)各有3張卡片,現(xiàn)以投擲硬幣的形式進(jìn)行游戲.當(dāng)硬幣正面向上時(shí),A贏得B一張卡片,否則B贏得A一張卡片,如果某人已贏得所有卡片,則游戲終止,那么恰好擲完5次硬幣時(shí)游戲終止的概率為(  )
A、
1
16
B、
1
8
C、
3
32
D、
3
16

查看答案和解析>>

同步練習(xí)冊(cè)答案