分析 (1)利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系:ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
(2)設(shè)A(2+tAcosθ,1+tAsinθ),B(2+tBcosθ,1+tBsinθ).把直線的參數(shù)方程代入曲線C1的方程,根據(jù)t的幾何意義即可求出.
解答 解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,
∵ρ2=x2+y2,x=ρcosθ
∴曲線C1的直角坐標(biāo)方程是x2+y2=4x,
即(x-2)2+y2=4(4分)
(2)設(shè)A(2+tAcosθ,1+tAsinθ),B(2+tBcosθ,1+tBsinθ)
由已知|$\overrightarrow{MA}$|=2|$\overrightarrow{MB}$|,注意到M(2,1)是直線參數(shù)方程恒過的定點(diǎn),
∴tA=-2tB①
聯(lián)立直線的參數(shù)方程與曲線C1的直角坐標(biāo)方程得:t2cos2θ+(1+tsinθ)2=4,
整理得:t2+2tsinθ-3=0,(6分)
∴tA+tB=-2sinθ,tA•tB=-3,與①聯(lián)立得:sinθ=$\frac{\sqrt{6}}{4}$,cosθ=±$\frac{\sqrt{10}}{4}$
∴直線的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{\sqrt{10}}{4}t}\\{y=1+\frac{\sqrt{6}}{4}t}\end{array}\right.$,(為參數(shù))或$\left\{\begin{array}{l}{x=2-\frac{\sqrt{10}}{4}t}\\{y=1+\frac{\sqrt{6}}{4}t}\end{array}\right.$,(為參數(shù)).(8分)
消去參數(shù)得的普通方程為y=$\frac{\sqrt{15}}{5}$x-$\frac{2\sqrt{15}}{5}$+1或y=-$\frac{\sqrt{15}}{5}$x+$\frac{2\sqrt{15}}{5}$+1(10分)
點(diǎn)評(píng) 本題考查了極坐標(biāo)、直角坐標(biāo)方程、及參數(shù)方程的互化,考查了方程思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一直變小 | B. | 一直變大 | ||
C. | 先變小,后變大 | D. | 先變小,再變大,后變小 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 計(jì)算1+2+…+n | B. | 計(jì)算1+(1+2)+(1+2+3)+…(1+2+3+…+n) | ||
C. | 計(jì)算n! | D. | 以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y+5=0 | B. | 2x+y-5=0 | C. | 2x-y+5=0(2≤x≤3) | D. | 2x+y-5=0(2≤x≤3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com