已知橢圓的中心在原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(0,-2
2
),F(xiàn)2(0,2
2
),離心率e=
2
2
3

(1)求橢圓方程;
(2)斜率為-9的直線l與橢圓交于不同的兩點(diǎn)A、B,且線段AB中點(diǎn)的橫坐標(biāo)為-
1
2
,求直線l方程.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用橢圓c=2
2
,e=
2
2
3
,求出a,b,即可得出橢圓的方程;
(2)利用點(diǎn)差法,結(jié)合線段AB中點(diǎn)的橫坐標(biāo)為-
1
2
,即可求直線l的斜率,從而可得直線l方程.
解答: 解:(1)設(shè)橢圓方程為
y2
a2
+
x2
b2
=1
,…(1分)
由已知c=2
2
,e=
2
2
3

解得a=3,b=1…(4分)
∴橢圓方程為:
y2
9
+x2=1
.…(5分)
(2)設(shè)A(x1,y2),B(x2,y2),AB的中點(diǎn)為P(-
1
2
,t)在橢圓
y2
9
+x2=1
內(nèi),…(6分)
由中點(diǎn)坐標(biāo)公式有:x1+x2=-1,y1+y2=2t,
A(x1,y2),B(x2,y2),代入橢圓方程相減可得kAB=-
9
2t
=-9…(10分)
解得t=
1
2
,
∴P(-
1
2
,
1
2
)…(11分)
∴直線l方程為:9x+y+4=0…(12分)
點(diǎn)評(píng):本題考查橢圓的方程,考查直線與橢圓的位置關(guān)系,考查點(diǎn)差法的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD的底面是矩形,側(cè)面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中點(diǎn),AC與BD的交點(diǎn)為M.
(1)求證:PC∥平面EBD;
(2)求證:平面BED⊥平面AED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+|x|;
(2)f(x)=x2+x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若F1,F(xiàn)2分別是橢圓
x2
4
+y2=1的左、右焦點(diǎn).
(1)設(shè)點(diǎn)P是第一象限內(nèi)橢圓上的點(diǎn),且
PF1
PF2
=-
5
4
,求點(diǎn)P的坐標(biāo);
(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓交于不同的點(diǎn)A,B,且
OA
OB
>0,(其中O為原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F,y軸右側(cè)的點(diǎn)A在橢圓E上運(yùn)動(dòng),直線MA與圓C:x2+y2=b2相切于點(diǎn)M(x0,y0).
(1)求直線MA的方程;
(2)求證:|AF|+|AM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以40千米/時(shí)的速度向北偏東30°航行的科學(xué)探測(cè)船上釋放了一個(gè)探測(cè)氣球,氣球順風(fēng)向正東飄去,3分鐘后氣球上升到1千米處,從探測(cè)船上觀察氣球,仰角為30°,求氣球的水平飄移速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=-2x3+6ax(0≤x≤1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=4y的焦點(diǎn)為F,過(guò)點(diǎn)F作直線l交拋物線C于A、B兩點(diǎn);橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,點(diǎn)F是它的一個(gè)頂點(diǎn),且其離心率e=
3
2

(1)求橢圓E的方程;
(2)經(jīng)過(guò)A、B兩點(diǎn)分別作拋物線C的切線l1、l2,切線l1與l2相交于點(diǎn)M.證明:點(diǎn)M定在直線y=-1上;
(3)橢圓E上是否存在一點(diǎn)M′,經(jīng)過(guò)點(diǎn)M′作拋物線C的兩條切線M′A′、M′B′(A′、B′為切點(diǎn)),使得直線A′B′過(guò)點(diǎn)F?若存在,求出切線M′A′、M′B′的方程;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)雙曲線x2-
y2
4
=1的右焦點(diǎn)作直線l與圓x2+y2=4相切于點(diǎn)M,l與雙曲線交于點(diǎn)P,則
|PM|
|PF|
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案