A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{10}}}{10}$ | D. | $\frac{{3\sqrt{10}}}{10}$ |
分析 利用向量的數(shù)量積將條件進(jìn)行轉(zhuǎn)化,利用數(shù)形結(jié)合進(jìn)行求解即可得到結(jié)論.
解答 解:設(shè)z=$\frac{{\overrightarrow{OA}•\overrightarrow{OM}}}{{|{\overrightarrow{OM}}|}}$,則z=$\frac{{\overrightarrow{OA}•\overrightarrow{OM}}}{{|{\overrightarrow{OM}}|}}$=|$\overrightarrow{OA}$|•$\frac{\overrightarrow{OA}•\overrightarrow{OM}}{|\overrightarrow{OA}||\overrightarrow{OM}|}$=|$\overrightarrow{OA}$|•cos∠A0M,
∵O(0,0),A(1,0).
∴|$\overrightarrow{OA}$|=1,
∴z=|$\overrightarrow{OA}$|•cos∠A0M=cos∠A0M,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
要使cos∠A0M,
則∠A0M最大,
即當(dāng)M在C處時(shí),∠A0M最大,
由$\left\{\begin{array}{l}{x+y=4}\\{x-y=-2}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即C(1,3),
則|AC|=$\sqrt{10}$,
則cos∠A0M=$\frac{1}{\sqrt{10}}$=$\frac{{\sqrt{10}}}{10}$,
故選:C.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用向量的數(shù)量積將條件進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-$\frac{π}{24}$ | B. | 1$-\frac{π}{6}$ | C. | 1$-\frac{π}{12}$ | D. | 2$-\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{{\sqrt{2}}}{2}$ | B. | 0 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,1),$\sqrt{2}$ | B. | (2,1),$\sqrt{2}$ | C. | (-2,1),2 | D. | (2,-1),2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 拋物線 | D. | 雙曲線 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com