16.將全體正整數(shù)排成一個(gè)三角形數(shù)陣:按照以上的排列規(guī)律,第20行第2個(gè)數(shù)是192.

分析 前n-1行共有正整數(shù)1+2+…+(n-1)個(gè),由此能求出第20行第2個(gè)數(shù).

解答 解:前n-1行共有正整數(shù)1+2+…+(n-1)個(gè),
即$\frac{n(n-1)}{2}$=$\frac{{n}^{2}-n}{2}$個(gè),
因此第20行第3個(gè)數(shù)是全體正整數(shù)中第$\frac{2{0}^{2}-20}{2}$+2=192個(gè),
∴第20行第2個(gè)數(shù)是192.
故答案為:192.

點(diǎn)評(píng) 本小題考查歸納推理和等差數(shù)列求和公式,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.23000的末兩位數(shù)是( 。
A.46B.56C.66D.76

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2-3x,且f(x)在x=-1處取得極值.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0,5]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知數(shù)列{an}中,an=$\frac{1}{(n+1)^{2}}$,記f(n)=(1-a1)(1-a2)…(1-an),試計(jì)算f(1),f(2),f(3)的值,推測(cè)f(n)的表達(dá)式為f(n)=$\frac{n+2}{2(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說(shuō)法正確的是( 。
A.若K2的觀測(cè)值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病
B.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤
C.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說(shuō)某人吸煙,那么他有99%的可能患有肺病
D.以上三種說(shuō)法都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且點(diǎn)$(1,\frac{3}{2})$在橢圓上,
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線l過(guò)右焦點(diǎn)F2與橢圓C交于M,N兩點(diǎn),若AM,AN的斜率k1,k2滿足k1+k2=-1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知實(shí)數(shù)x、y、z滿足x2+2y2+3z2=4,設(shè)T=xy+yz,則T的取值范圍是( 。
A.[$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$]B.[$-\frac{\sqrt{6}}{6}$,$\frac{2\sqrt{6}}{3}$]C.[$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{3}}{3}$]D.[$-\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.對(duì)于集合{a1,a2,…,an}和常數(shù)a0,定義:w=$\frac{sin({a}_{1}-{a}_{0})^{2}+sin({a}_{2}-{a}_{0})^{2}+…+sin({a}_{n}-{a}_{0})^{2}}{n}$為集合{a1,a2,…,an}相對(duì)于a0的“正弦方差”,則集合{$\frac{π}{2}$,$\frac{5π}{6}$,$\frac{7π}{6}$}相對(duì)a0的“正弦方差”為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{a}_{0}}{4}$D.$\frac{{a}_{0}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.以下四個(gè)命題中,真命題的個(gè)數(shù)是( 。
①“若a+b≥2,則a,b中至少有一個(gè)不小于1”的逆命題
②?α0,β0∈R,使得sin(α00)=sinα0+sinβ0
③若a∈R,則“$\frac{1}{a}$<1”是“a>1”的必要不充分條件24
④命題“?x0∈R,x02+2x0+3<0”的否定是“?x∈R,x2+2x+3>0”
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案