【題目】由①正方形的對(duì)角線相等;②平行四邊形的對(duì)角線相等;③正方形是平行四邊形,根據(jù)“三段論”推理出一個(gè)結(jié)論,則這個(gè)結(jié)論是(
A.正方形的對(duì)角線相等
B.平行四邊形的對(duì)角線相等
C.正方形是平行四邊形
D.以上均不正確

【答案】A
【解析】解:由演繹推理三段論可得
“三段論”推理出一個(gè)結(jié)論,則這個(gè)結(jié)論是:”正方形的對(duì)角線相等“,
故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在空間直角坐標(biāo)系中,點(diǎn)P(3,1,5)關(guān)于yOz平面對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(
A.(﹣3,1,5)
B.(﹣3,﹣1,5)
C.(3,﹣1,﹣5)
D.(﹣3,1,﹣5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f是有序數(shù)對(duì)集合M={(x,y)|x∈N*,y∈N*}上的一個(gè)映射,正整數(shù)數(shù)對(duì)(x,y)在映射f下的像為實(shí)數(shù)z,記作f(x,y)=z.對(duì)于任意的正整數(shù)m,n(m>n),映射f由下表給出:

(x,y)

(nn)

(m,n)

(nm)

f(x,y)

n

mn

mn

f(3,5)=________,使不等式f(2xx)≤4成立的x的集合是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線aα,給出以下三個(gè)命題: ①若平面α∥平面β,則直線a∥平面β;
②若直線a∥平面β,則平面α∥平面β;
③若直線a不平行于平面β,則平面α不平行于平面β.其中正確的命題是(

A.②
B.③
C.①②
D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,n,l是直線,α、β是平面,下列命題中,正確的命題是 . (填序號(hào))
①若l垂直于α內(nèi)兩條直線,則l⊥α;
②若l平行于α,則α內(nèi)可有無(wú)數(shù)條直線與l平行;
③若mα,lβ,且l⊥m,則α⊥β;
④若m⊥n,n⊥l則m∥l;
⑤若mα,lβ,且α∥β,則m∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】l1 , l2 , l3是空間三條不同的直線,則下列命題正確的是(
A.l1⊥l2 , l2⊥l3l1∥l3
B.l1⊥l2 , l2∥l3l1⊥l3
C.l1∥l2∥l3l1 , l2 , l3共面
D.l1 , l2 , l3共點(diǎn)l1 , l2 , l3共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次連環(huán)交通事故中,只有一個(gè)人需要負(fù)主要責(zé)任,但在警察詢(xún)問(wèn)時(shí),甲說(shuō):“主要責(zé)任在乙”;乙說(shuō):“丙應(yīng)負(fù)主要責(zé)任”;丙說(shuō)“甲說(shuō)的對(duì)”;丁說(shuō):“反正我沒(méi)有責(zé)任”,四人中只有一個(gè)人說(shuō)的是真話(huà),則該事故中需要負(fù)主要責(zé)任的人是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解三年級(jí)、六年級(jí)、九年級(jí)這三個(gè)年級(jí)之間的學(xué)生視力是否存在顯著差異,擬從這三個(gè)年級(jí)中按人數(shù)比例抽取部分學(xué)生進(jìn)行調(diào)查,則最合理的抽樣方法是( )

A. 抽簽法 B. 系統(tǒng)抽樣法 C. 分層抽樣法 D. 隨機(jī)數(shù)法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集U=R,若集合A={x||x﹣1|>1},則UA= 。

查看答案和解析>>

同步練習(xí)冊(cè)答案