【題目】l1 , l2 , l3是空間三條不同的直線,則下列命題正確的是( )
A.l1⊥l2 , l2⊥l3l1∥l3
B.l1⊥l2 , l2∥l3l1⊥l3
C.l1∥l2∥l3l1 , l2 , l3共面
D.l1 , l2 , l3共點(diǎn)l1 , l2 , l3共面
【答案】B
【解析】對(duì)于A,通過常見的圖形正方體,從同一個(gè)頂點(diǎn)出發(fā)的三條棱兩兩垂直,得到A錯(cuò) 對(duì)于B,∵l1⊥l2 , ∴l(xiāng)1 , l2所成的角是90°,
又∵l2∥l3∴l(xiāng)1 , l3所成的角是90°
∴l(xiāng)1⊥l2得到B對(duì)
對(duì)于C,例如三棱柱中的三側(cè)棱平行,但不共面,故C錯(cuò)
對(duì)于D,例如三棱錐的三側(cè)棱共點(diǎn),但不共面,故D錯(cuò)
故選B
【考點(diǎn)精析】本題主要考查了平面的基本性質(zhì)及推論的相關(guān)知識(shí)點(diǎn),需要掌握如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi);過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓C與圓(x+2)2+(y-1)2=1關(guān)于原點(diǎn)對(duì)稱,則圓C的方程是( )
A.(x-2)2+(y+1)2=1
B.(x-2)2+(y-1)2=1
C.(x-1)2+(y+2)2=1
D.(x+1)2+(y-2)2=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“直線l與平面α無公共點(diǎn)”是“l(fā)∥α”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“a>1”是“函數(shù)f(x)=ax+cosx在R上單調(diào)遞增”的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充分必要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由①正方形的對(duì)角線相等;②平行四邊形的對(duì)角線相等;③正方形是平行四邊形,根據(jù)“三段論”推理出一個(gè)結(jié)論,則這個(gè)結(jié)論是( )
A.正方形的對(duì)角線相等
B.平行四邊形的對(duì)角線相等
C.正方形是平行四邊形
D.以上均不正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某微信群中甲、乙、丙、丁、卯五名成員同時(shí)搶4個(gè)紅包,每人最多搶一個(gè),且紅包被全部搶光,4個(gè)紅包中有兩個(gè)2元,兩個(gè)3元(紅包中金額相同視為相同的紅包),則甲乙兩人都搶到紅包的情況有( )
A.35種
B.24種
C.18種
D.9種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有編號(hào)依次為1,2,3,4,5,6的6名學(xué)生參加數(shù)學(xué)競(jìng)賽選拔賽,今有甲、乙、丙、丁四位老師在猜誰將得第一名,甲猜不是3號(hào)就是5號(hào);乙猜6號(hào)不可能;丙猜2號(hào),3號(hào),4號(hào)都不可能;丁猜是1號(hào),2號(hào),4號(hào)中的某一個(gè).若以上四位老師中只有一位老師猜驛,則猜對(duì)者是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com