【題目】設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個(gè)“次不動點(diǎn)”,也稱f(x)在區(qū)間D上存在次不動點(diǎn).若函數(shù)f(x)=ax2﹣3x﹣a+ 在區(qū)間[1,4]上存在次不動點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,0)
B.(0,
C.[ ,+∞)
D.(﹣∞, ]

【答案】D
【解析】解:依題意,存在x∈[1,4], 使F(x)=f(x)+x=ax2﹣2x﹣a+ =0,
當(dāng)x=1時(shí),使F(1)= ≠0;
當(dāng)x≠1時(shí),解得a= ,
∴a′= =0,
得x=2或x= ,( <1,舍去),

x

(1,2)

2

(2,4)

a′

+

0

a

最大值

∴當(dāng)x=2時(shí),a最大= =
所以常數(shù)a的取值范圍是(﹣∞, ],
故選:D.
根據(jù)“f(x)在區(qū)間D上有次不動點(diǎn)”當(dāng)且僅當(dāng)“F(x)=f(x)+x在區(qū)間D上有零點(diǎn)”,依題意,存在x∈[1,4],使F(x)=f(x)+x=ax2﹣2x﹣a+ =0,討論將a分離出來,利用導(dǎo)數(shù)研究出等式另一側(cè)函數(shù)的取值范圍即可求出a的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=1+x﹣ ,g (x)=1﹣x+ ,設(shè)函數(shù)F(x)=f(x﹣4)g(x+3),且函數(shù) F ( x) 的零點(diǎn)均在區(qū)間[a,b]( a<b,a,b∈Z )內(nèi),則 b﹣a 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(﹣x)=f(2+x),f(2)=1,則不等式f(x)<ex的解集為(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠A=90°,點(diǎn)D是邊BC上的動點(diǎn),且| |=3,| |=4, (λ>0,μ>0),則當(dāng)λμ取得最大值時(shí),| |的值為(
A.
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(x﹣1)+ax2+x+1,g(x)=(x﹣1)ex+ax2 , a∈R. (Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)若函數(shù)g(x)有兩個(gè)零點(diǎn),試求a的取值范圍;
(Ⅲ)證明f(x)≤g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2分別是橢圓C: =1(a>b>0)的兩個(gè)焦點(diǎn),P(1, )是橢圓上一點(diǎn),且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過點(diǎn)F2 , 且與橢圓C交于A、B兩點(diǎn),試問x軸上是否存在定點(diǎn)Q,使得 =﹣ 恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2lnx+ . (Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果對所有的x≥1,都有f(x)≤ax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校開展“讀好書,好讀書”活動,要求本學(xué)期每人至少讀一本課外書,該校高一共有100名學(xué)生,他們本學(xué)期讀課外書的本數(shù)統(tǒng)計(jì)如圖所示. (Ⅰ)求高一學(xué)生讀課外書的人均本數(shù);
(Ⅱ)從高一學(xué)生中任意選兩名學(xué)生,求他們讀課外書的本數(shù)恰好相等的概率;
(Ⅲ)從高一學(xué)生中任選兩名學(xué)生,用ζ表示這兩人讀課外書的本數(shù)之差的絕對值,求隨機(jī)變量ζ的分布列及數(shù)學(xué)期望E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,三邊a,b,c所對應(yīng)的角分別是A,B,C,已知a,b,c成等比數(shù)列.
(1)若 + = ,求角B的值;
(2)若△ABC外接圓的面積為4π,求△ABC面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案