【題目】如圖,在四棱錐中,為正方形,且平面平面,點(diǎn)為棱的中點(diǎn).

1)在棱上是否存在一點(diǎn),使得平面?并說(shuō)明理由;

2)若,求直線(xiàn)與平面所成角的正弦值.

【答案】1)存在,理由見(jiàn)解析;(2.

【解析】

1)當(dāng)中點(diǎn)時(shí),分別取中點(diǎn),,連接,,,由平面幾何知識(shí)證明四邊形是平行四邊形,最后由線(xiàn)面平行的判定定理證明即可;

2)取中點(diǎn),連接,,以為原點(diǎn),,,分別為,軸建立空間直角坐標(biāo)系,利用向量法求解即可.

1)當(dāng)中點(diǎn)時(shí),平面.理由如下:

如圖,分別取,中點(diǎn),,連接,,

又∵的中點(diǎn),∴,

又∵為正方形,則

,

又∵中點(diǎn),∴,,則四邊形是平行四邊形

平面,平面

平面.

2)如圖,取中點(diǎn),連接,

,則

∵平面平面,平面平面,平面

平面

∴以為原點(diǎn),分別為,,軸建立空間直角坐標(biāo)系

設(shè),則,,,

,

設(shè)平面的一個(gè)法向量為,則

,,則,

∴直線(xiàn)與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.

1)證明:平面;

2)若的中點(diǎn),二面角等于60°,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù),為直線(xiàn)的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程,并求時(shí)直線(xiàn)的普通方程;

2)若直線(xiàn)和曲線(xiàn)交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位同學(xué)在一項(xiàng)集訓(xùn)中的40次測(cè)試分?jǐn)?shù)都在[50,100]內(nèi),將他們的測(cè)試分?jǐn)?shù)分別繪制成頻率分布直方圖,如圖所示,記甲、乙、丙的分?jǐn)?shù)標(biāo)準(zhǔn)差分別為s1,s2,s3,則它們的大小關(guān)系為( )

A.s1s2s3B.s1s3s2

C.s3s1s2D.s3s2s1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】天干地支紀(jì)年法,源于中國(guó).中國(guó)自古便有十天干與十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來(lái),天干在前,地支在后,天干由“甲”起,地支由“子”起,比如說(shuō)第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”… …依此類(lèi)推,排列到“癸酉”后,天干回到“甲”重新開(kāi)始,即“甲戌”“乙亥”,之后地支回到“子”重新開(kāi)始,即“丙子”… …依此類(lèi)推.1911年中國(guó)爆發(fā)推翻清朝專(zhuān)制帝制、建立共和政體的全國(guó)性革命,這一年是辛亥年,史稱(chēng)“辛亥革命”.1949新中國(guó)成立,請(qǐng)推算新中國(guó)成立的年份為( )

A.己丑年B.己酉年

C.丙寅年D.甲寅年

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn),為直線(xiàn)上的動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線(xiàn)的兩條切線(xiàn),切點(diǎn)分別為,.

1)證明:直線(xiàn)過(guò)定點(diǎn);

2)若以為圓心的圓與直線(xiàn)相切,且切點(diǎn)為線(xiàn)段的中點(diǎn),求該圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將等腰直角三角形沿斜邊上的高翻折,使二面角的大小為,翻折后的中點(diǎn)為.

)證明平面;

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)的動(dòng)直線(xiàn)ly軸交于點(diǎn),過(guò)點(diǎn)T且垂直于l的直線(xiàn)與直線(xiàn)相交于點(diǎn)M.

1)求M的軌跡方程;

2)設(shè)M位于第一象限,以AM為直徑的圓y軸相交于點(diǎn)N,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書(shū)作序時(shí),介紹了勾股圓方圖,又稱(chēng)趙爽弦圖(以弦為邊長(zhǎng)得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類(lèi)比趙爽弦圖,可類(lèi)似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案