已知F1,F(xiàn)2分別為雙曲數(shù)學公式的左、右焦點,P為雙曲線左支上任一點,若數(shù)學公式的最小值為8a,則雙曲線的離心率e的取值范圍是


  1. A.
    (1,+∞)
  2. B.
    (0,3]
  3. C.
    (1,3]
  4. D.
    (0,2]
C
分析:由定義知:|PF2|-|PF1|=2a,|PF2|=2a+|PF1|,==,當且僅當 ,即|PF1|=2a時取得等號.再由焦半徑公式得雙曲線的離心率的取值范圍.
解答:由定義知:|PF2|-|PF1|=2a,
|PF2|=2a+|PF1|,
=
=,
當且僅當 ,
即|PF1|=2a時取得等號
設P(x0,y0) (x0≤-a)
由焦半徑公式得:
|PF1|=-ex0-a=2a
ex0=-2a
e=-≤3
又雙曲線的離心率e>1
∴e∈(1,3].
故選C.
點評:本題考查雙曲線的性質(zhì)和應用,解題時要認真審題,注意焦半徑公式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別為橢圓
x2
25
+
y2
9
=1的左、右焦點,P為橢圓上一點,Q是y軸上的一個動點,若|
PF1
|-|
PF2
|=4,則
PQ
•(
PF1
-
PF2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別為橢圓
x2
3
+
y2
2
=1
的左、右焦點,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直于直線l1,垂足為D,線段DF2的垂直平分線交l2于點M.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)過點F1作直線交曲線C于兩個不同的點P和Q,設
F1P
F1Q
,若λ∈[2,3],求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別為橢圓
x2
16
+
y2
9
=1
的左、右焦點,點P在橢圓上,若P、F1、F2是一個直角三角形的三個頂點,則△PF1F2的面積為
9
7
4
9
7
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別為橢圓的左、右焦點,橢圓上點M的橫坐標等于右焦點的橫坐標,其縱坐標等于短半軸長的
2
3
,則橢圓的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別為雙曲線x2-
y2
4
=1
的左、右焦點,P是雙曲線上的動點,過F1作∠F1PF2的平分線的垂線,垂足為H,則點H的軌跡為( 。

查看答案和解析>>

同步練習冊答案