5.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的一個(gè)單調(diào)遞增區(qū)間是(  )
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[-$\frac{π}{2}$,0]C.[-$\frac{5π}{12}$,$\frac{π}{12}$]D.[$\frac{π}{12}$,$\frac{7π}{12}$]

分析 根據(jù)正弦函數(shù)的單調(diào)性建立不等式關(guān)系即可求出函數(shù)的遞增區(qū)間.

解答 解:由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得kπ-$\frac{5π}{12}$≤x≤2kπ+$\frac{π}{12}$,k∈Z,
當(dāng)k=0時(shí),不等式為-$\frac{5π}{12}$≤x≤$\frac{π}{12}$,
即函數(shù)的一個(gè)單調(diào)遞增區(qū)間為[-$\frac{5π}{12}$,$\frac{π}{12}$],
故選:C.

點(diǎn)評(píng) 本題主要考查三角函數(shù)單調(diào)區(qū)間的求解,利用三角函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.用列舉法將方程log3x+log3(x+2)=1的解集表示為{1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=cos(2x+ϕ)(其中0<ϕ<π,x∈R).已知$f(0)=-\frac{1}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)若角θ滿足$sin(θ+\frac{π}{3})=f(θ)$,且0≤θ<π,求角θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.綿陽市某高中的5名高三學(xué)生計(jì)劃在高考結(jié)束后到北京、上海、杭州、廣州等4個(gè)城市去旅游,要求每個(gè)城市都要有學(xué)生去,每個(gè)學(xué)生只去一個(gè)城市旅游,且學(xué)生甲不到北京,則不同的出行安排有( 。
A.180種B.72種C.216種D.204種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-8x+6lnx.
(Ⅰ)如果f(x)在區(qū)間(m,m+$\frac{1}{2}$)上單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(Ⅱ)若對(duì)任意k∈[-1,1],函數(shù)y=kx-a(這里a<3),其中0<x≤6的圖象總在函數(shù)f(x)的圖象的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.先后拋擲兩顆質(zhì)地均勻的骰子,則兩次朝上的點(diǎn)數(shù)之積為奇數(shù)的概率為( 。
A.$\frac{1}{12}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a∈R,則“a=-$\frac{3}{2}$”是“直線l1:ax+2y-1=0與直線l2:x+a(a+1)y+4=0垂直”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)數(shù)列{an}是公比小于1的正項(xiàng)等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=14,且a1+13,4a2,a3+9成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an•(n+2-λ),且數(shù)列{bn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.利用二項(xiàng)式定理證明:49n+16n-1(n∈N*)能被16整除.

查看答案和解析>>

同步練習(xí)冊(cè)答案