如圖所示,四邊形PDCE為矩形,四邊形ABCD為直角梯形,且∠BAD=∠ADC=90°,平面PDCE⊥平面ABCD,AB=AD=
1
2
CD=1,PD=
2

(Ⅰ)若M為PA中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)求該幾何體被平面PBD所分成的兩部分的體積比.
考點(diǎn):直線(xiàn)與平面平行的判定,棱柱、棱錐、棱臺(tái)的體積
專(zhuān)題:空間位置關(guān)系與距離
分析:(Ⅰ)M為PA中點(diǎn),連結(jié)PC,交DE與N,連結(jié)MN,通過(guò)直線(xiàn)與平面平行的判定定理即可求證:AC∥平面MDE;
(Ⅱ)證明PD⊥平面ABD,求出VP-AED,證明AD⊥平面PDCE,求出四棱錐的體積VE-PDCE的體積即可得到比值.
解答: 解:(Ⅰ)證明:連結(jié)PC,交DE與N,連結(jié)MN,
△PAC中,M,N分別為兩腰PA,PC的中點(diǎn),
∴MN∥AC.…(2分)
因?yàn)镸N?面MDE,又AC?面MDE,
所以AC∥平面MDE.…(4分)


(Ⅱ)解:由四邊形PDCE為矩形,知PD⊥DC.
又平面PDCE⊥平面ABCD,
∴PD⊥平面ABD            …(6分)
三棱錐P-ABD的體積為
VP-AED=
1
3
S△AED×PD
=
1
3
×
1
2
AB×AD×PD
=
1
6
×1×1×
2
=
2
6
.…(8分)
由已知AD⊥DC,又平面PDCE⊥平面ABCD,
∴AD⊥平面PDCE,∵AB∥CD,四棱錐的體積為
VE-PDCE=
1
3
SPDCE×AD
=
1
3
CD×PD×AD
=
1
3
×2×
2
×1
=
2
2
3
.…(10分)
VE-PDCE
VP-AED
=
2
2
3
2
6
=4
,或者
VP-AED
VE-PDCE
=
2
6
2
2
3
=
1
4
,
所以原幾何體被平面PBD所分成的兩部分的體積比4或
1
4
.…(12分)
點(diǎn)評(píng):本題考查直線(xiàn)與平面的平行的判定定理以及直線(xiàn)與平面垂直的判定定理的應(yīng)用,幾何體的體積的求法,考查空間想象能力以及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,an+1=
an2
2an-5
,已知該數(shù)列既是等差數(shù)列又是等比數(shù)列,則該數(shù)列的前20項(xiàng)的和等于( 。
A、100
B、0或100
C、100或-100
D、0或-100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an},a1=1,an+1=
an
3
+
1
3n
.?dāng)?shù)列{bn},bn=3n-1an.正數(shù)數(shù)列{dn},dn2=1+
1
bn2
+
1
bn+12

(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)設(shè)數(shù)列{bn},{dn}的前n項(xiàng)和分別為Bn,Dn,求數(shù)列{bnDn+dnBn-bndn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小區(qū)想利用一矩形空地ABCD建市民健身廣場(chǎng),設(shè)計(jì)時(shí)決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個(gè)等腰直角三角形,其中AD=60m,AB=40m,且△EFG中,∠EGF=90°,經(jīng)測(cè)量得到AE=10m,EF=20m.為保證安全同時(shí)考慮美觀,健身廣場(chǎng)周?chē)鷾?zhǔn)備加設(shè)一個(gè)保護(hù)欄.設(shè)計(jì)時(shí)經(jīng)過(guò)點(diǎn)G作一直線(xiàn)交AB,DF于M,N,從而得到五邊形MBCDN的市民健身廣場(chǎng),設(shè)DN=x(m)
(1)將五邊形MBCDN的面積y表示為x的函數(shù);
(2)當(dāng)x為何值時(shí),市民健身廣場(chǎng)的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知q和n均為給定的大于1的自然數(shù),設(shè)集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…n}.
(Ⅰ)當(dāng)q=2,n=3時(shí),用列舉法表示集合A;
(Ⅱ)設(shè)s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.證明:若an<bn,則s<t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直三棱柱ABC-A1B1C1(側(cè)棱與底面垂直的三棱柱為直三棱柱)中,CA=CB,D,D1,E分別為邊AB,A1B1,BC1的中點(diǎn).
(1)求證:平面ABC1⊥平面DCC1D1
(2)若D1在平面ABC1的射影F在邊AE上,且
AA 1
AB
=
1
2
,求直線(xiàn)AD1與平面ABC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足a1=1,|an+1-an|=pn,n∈N*
(Ⅰ)若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值;
(Ⅱ)若p=
1
2
,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,-2),橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,F(xiàn)是橢圓E的右焦點(diǎn),直線(xiàn)AF的斜率為
2
3
3
,O為坐標(biāo)原點(diǎn).
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)A的動(dòng)直線(xiàn)l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿(mǎn)足iz=2(i為虛數(shù)單位),則z=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案