20.如圖,在五面體ABC-DEF中,四邊形BCFE是平行四邊形.
(1)求證:CF∥AD;
(2)判斷DF與BC是否平行?說明你的理由.

分析 (1)由線面平行的性質(zhì)定理,即可得證CF∥AD.
(2)用反證法即可證明.

解答 證明:(1)因為四邊形BCFE 是矩形,所以CF∥BE,
因為CF?平面ABED,BE?平面ABED,
所以CF∥平面ABED.
因為CF?平面ACFD,平面ACFD∩平面ABED=AD,
所以CF∥AD.
(2)假設(shè)DF與BC平行,
因為四邊形BCFE 是矩形,所以BC∥EF,
因為DF?平面EFD,EF?平面EFD,
所以可得:EF∥DF,
因為EF∩DF=F,故矛盾,
故DF與BC不平行.

點評 本題考查直線與平面垂直的判定定理以及線面平行的性質(zhì)定理,考查邏輯思維能力,空間想象能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.一物體沿直線以v(t)=8t-2t2(t的單位為:秒,v的單位為:米/秒)的速度作變速直線運動,求該物體從時刻t=0秒至?xí)r刻 t=5秒間運動的路程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=sin(2x+φ)(0<φ<π)在x=$\frac{π}{2}$處取得最值,若數(shù)列{xn}是首項與公差均為$\frac{π}{4}$的等差數(shù)列,則f(x1)+f(x2)+f(x3)+…+f(x2015)的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.甲船在島A的正南B處,以4km/h的速度向正北航行,AB=10km,同時乙船自島A出發(fā)以6km/h的速度向北偏東60°的方向駛?cè),?dāng)甲、乙兩船相距最近時,它們所航行的時間為(  )
A.$\frac{150}{7}$minB.$\frac{15}{7}$hC.21.5 minD.2.15 h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,N是BC的中點,點P在A1B1上,且滿足$\overrightarrow{{A_1}P}$=λ$\overrightarrow{{A_1}{B_1}}$,直線PN與平面ABC所成角θ的正切值取最大值時λ的值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若數(shù)列{an}(n∈N*)滿足:①an≥0;②an-2an+1+an+2≥0;③a1+a2+…+an≤1,則稱數(shù)列{an}為“和諧”數(shù)列.
(1)已知數(shù)列{an},${a_n}=\frac{1}{n(n+1)}$(n∈N*),判斷{an}是否為“和諧”數(shù)列,說明理由;
(2)若數(shù)列{an}為“和諧”數(shù)列,證明:${a_n}-{a_{n+1}}<\frac{2}{n^2}$.(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知不等式組$\left\{\begin{array}{l}{x+y≥4}\\{x-y≥-2}\\{x≤2}\end{array}\right.$,表示的平面區(qū)域為D,點O(0,0),A(1,0).若點M是D上的動點,則$\frac{\overrightarrow{OA}•\overrightarrow{OM}}{|\overrightarrow{OM|}}$的最小值是( 。
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的前n項和為Sn,其中S4=-8,a3+a4=0.
(1)求此數(shù)列的通項公式an
(2)求此數(shù)列的前n項和公式Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖陰影部分的面積是( 。
A.e+$\frac{1}{e}$B.e+$\frac{1}{e}$-1C.e+$\frac{1}{e}$-2D.e-$\frac{1}{e}$

查看答案和解析>>

同步練習(xí)冊答案