已知橢圓C: +=1(a>0,b>0)的右焦點(diǎn)為F(3,0),且點(diǎn)(-3, )在橢圓C上,則橢圓C的標(biāo)準(zhǔn)方程為    . 


+=1解析:左焦點(diǎn)為(-3,0),

∴2a=+

=6,

∴a=3,b2=18-9=9.

∴橢圓標(biāo)準(zhǔn)方程為+=1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線經(jīng)過點(diǎn)(4,-2),則它的離心率為(  )

(A) (B) (C) (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C: +=1(a>b>0)的左焦點(diǎn)為F,C與過原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,則C的離心率為(  )

(A)   (B)   (C)   (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓+=1的兩個(gè)焦點(diǎn)是F1、F2,點(diǎn)P在該橢圓上,若|PF1|-|PF2|=2,則△PF1F2的面積是    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知左焦點(diǎn)為F(-1,0)的橢圓過點(diǎn)E(1,).過點(diǎn)P(1,1)分別作斜率為k1,k2的橢圓的動(dòng)弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若P為線段AB的中點(diǎn),求k1;

(3)若k1+k2=1,求證直線MN恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖所示,中心均為原點(diǎn)O的雙曲線與橢圓有公共焦點(diǎn),M、N是雙曲線的兩頂點(diǎn).若M,O,N將橢圓長(zhǎng)軸四等分,則雙曲線與橢圓的離心率的比值是(  )

 (A)3   (B)2           (C)   (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C1: +=1(a>b>0)的右頂點(diǎn)為A(1,0),過C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為1.

(1)求橢圓C1的方程;

(2)設(shè)點(diǎn)P在拋物線C2:y=x2+h(h∈R)上,C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時(shí),求h的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


過橢圓+=1(a>b>0)的焦點(diǎn)垂直于x軸的弦長(zhǎng)為,則雙曲線-=1的離心率e的值是(  )

(A)   (B)

(C)   (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)(x1y1),(x2,y2),…,(xn,yn)是變量xyn個(gè)樣本點(diǎn),直線l是由這些樣本點(diǎn)通過最小二乘法得到的線性回歸方程(如圖),以下結(jié)論中正確的是(  )

A.xy正相關(guān)

B.xy的相關(guān)系數(shù)為直線l的斜率

C.xy的相關(guān)系數(shù)在-1到0之間

D.當(dāng)n為偶數(shù)時(shí),分布在l兩側(cè)的樣本點(diǎn)的個(gè)數(shù)一定相同

查看答案和解析>>

同步練習(xí)冊(cè)答案