為了判斷甲乙兩名同學(xué)本學(xué)期幾次數(shù)學(xué)考試成績(jī)哪個(gè)比較穩(wěn)定,通常需要知道這兩個(gè)人的( 。
A、平均數(shù)B、眾數(shù)
C、方差D、頻率分布
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差
專題:概率與統(tǒng)計(jì)
分析:樣本方差是衡量一個(gè)樣本波動(dòng)大小的量,方差越小,代表這組數(shù)據(jù)越穩(wěn)定,方差越大,代表這組數(shù)據(jù)越不穩(wěn)定.
解答: 解:∵樣本方差是衡量一個(gè)樣本波動(dòng)大小的量,
方差越小,代表這組數(shù)據(jù)越穩(wěn)定,
方差越大,代表這組數(shù)據(jù)越不穩(wěn)定,
∴為了判斷甲乙兩名同學(xué)本學(xué)期幾次數(shù)學(xué)考試成績(jī)哪個(gè)比較穩(wěn)定,
通常需要知道這兩個(gè)人的方差.
故選:C.
點(diǎn)評(píng):本題考查方差的應(yīng)用,解題時(shí)要認(rèn)真審題,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=2,右焦點(diǎn)F(c,0),方程ax2+bx-c=0的兩個(gè)根分別為x1,x2,則點(diǎn)P(x1,x2)在(  )
A、圓x2+y2=10內(nèi)
B、圓x2+y2=10上
C、圓x2+y2=10外
D、以上三種情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記Sk=1k+2k+3k+…+nk,當(dāng)k=1,2,3,…時(shí),觀察下列等式:
S1=
1
2
n2+
1
2
n,
S2=
1
3
n3+
1
2
n2+
1
6
n,
S3=
1
4
n4+
1
2
n3+
1
4
n2,
S4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n,
S5=An6+
1
2
n5+
5
12
n4+Bn2,….
可以推測(cè)A-B等于( 。
A、
2
3
B、
1
3
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x
sin2x
,x∈(-
π
2
,0)∪(0,
π
2
)的圖象可能是下列圖象中的( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)盒子中裝有4張卡片,每張卡片上寫(xiě)一個(gè)數(shù)字,數(shù)字分別是1?2?3?4.現(xiàn)從盒子中隨機(jī)抽取卡片.若一次抽取3張卡片,求3張卡片上數(shù)字之和大于7的概率( 。
A、
7
24
B、
11
24
C、
7
16
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)到其焦點(diǎn)的距離為3,雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線過(guò)點(diǎn)M,則雙曲線的離心率等于( 。
A、3
B、4
C、
1
3
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,直線l的方程為x-y+2=0,曲線C的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)).
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(2,
π
2
),判斷點(diǎn)P與直線l的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,1),
b
=(1,-2)
(1)求
a
+2
b
;
(2)若|
c
|=1,且
a
-
c
a
-2
c
垂直,求
a
c
的夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b,若函數(shù)f(x)在區(qū)間(-1,1)上不單調(diào),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案