精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系中,O為坐標原點,給定兩點A(1,0),B(0,-2),點C滿足,其中m,n∈R且m-2n=1.
(1)求點C的軌跡方程;
(2)設點C的軌跡與雙曲線(a>0,b>0且a≠b)交于M、N兩點,且以MN為直徑的圓過原點,求證:為定值;
(3)在(2)的條件下,若雙曲線的離心率不大于,求雙曲線實軸長的取值范圍.
【答案】分析:(1)由向量等式,得點C的坐標,消去參數即得點C的軌跡方程;
(2)將直線與雙曲線方程組成方程組,利用方程思想,求出x1x2+y1y2,再結合向量的垂直關系得到關于a,b的關系,化簡即得結論.
(3)由(2)得從而又e得出.解得雙曲線實軸長2a的取值范圍即可.
解答:解:(1)設C(x,y),∵
∴(x,y)=m(1,0)+n(0,-2).
∵m-2n=1,
∴x+y=1
即點C的軌跡方程為x+y=1(15分)
(2)由得(b2-a2)x2+2a2x2-a2-a2b2=0
由題意得(8分)
設M(x1,y1),N(x2,y2),

∵以MN為直徑的圓過原點,∴.即x1x2+y1y2=0.
∴x1x2+(1-x1)(1-x2)=1-(x1+x2)+2x1x2
=.即b2-a2-2a2b2=0.
為定值.(14分)
(3)∵

∵e

解得:0<a≤,0<2a≤1
∴雙曲線實軸長的取值范圍是(0,1].
點評:本小題主要考查雙曲線的標準方程和幾何性質、直線方程、求曲線的方程等基礎知識,考查曲線和方程的關系等解析幾何的基本思想方法及推理、運算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數,就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經過任何整點
②如果k與b都是無理數,則直線y=kx+b不經過任何整點
③直線l經過無窮多個整點,當且僅當l經過兩個不同的整點
④直線y=kx+b經過無窮多個整點的充分必要條件是:k與b都是有理數
⑤存在恰經過一個整點的直線.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,下列函數圖象關于原點對稱的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案