實(shí)數(shù)x、y滿足
x-4y≤3
3x+5y≤25
x≥1
,則
y
x
的取值范圍是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,設(shè)k=
y
x
,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求k的最值即可.
解答: 解:設(shè)k=
y
x
,則k的幾何意義為過(guò)原點(diǎn)的直線的斜率,
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖(陰影部分ABC):
則由圖象可知,過(guò)原點(diǎn)的直線y=kx,當(dāng)直線y=kx,經(jīng)過(guò)點(diǎn)A時(shí),直線的斜率k最小,
當(dāng)經(jīng)過(guò)點(diǎn)B時(shí),直線的斜率k最大,
x=1
x-4y=3
,解得
x=1
y=-
1
2
,即A(1,-
1
2
),此時(shí)k OA=
-
1
2
1
=-
1
2

x=1
3x+5y=25
,解得
x=1
y=
22
5
,即B(1,
22
5
),此時(shí)k=
22
5

∴直線y=kx的斜率k的取值范圍是-
1
2
≤k≤
22
5
,
故答案為:[-
1
2
22
5
].
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義為過(guò)原點(diǎn)直線的斜率,利用數(shù)形結(jié)合是解決線性規(guī)劃問(wèn)題中的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定集合A,B,定義一種新運(yùn)算:A⊕B={x|x∈A或x∈B,但x∉A∩B},又已知A={0,1,2},B={1,2,3},則A⊕B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)邊長(zhǎng)為1的正方體的8個(gè)頂點(diǎn)都在同一球面上,則該球的直徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
表示的平面區(qū)域記為C.
(1)畫(huà)出平面區(qū)域C,并求出C包含的整點(diǎn)個(gè)數(shù);
(2)求平面區(qū)域C的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(8,0),B、C兩點(diǎn)分別在y軸上和x軸上運(yùn)動(dòng),并且滿足
AB
BP
=0,
BC
=
CP
,
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若過(guò)點(diǎn)A的直線l與動(dòng)點(diǎn)P的軌跡交于M、N兩點(diǎn),
QM
QN
=97,其中Q(-1,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線|x|+2|y|≤4圍成的區(qū)域面積是( 。
A、8B、16C、24D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱(chēng),且滿足f(x)=-f(x+
3
2
)
,f(-1)=1,f(0)=-2,則f(1)+f(2)+…+f(2015)的值為( 。
A、1B、2C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線xy=1與直線y=x和y=2所圍成的平面圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,a),圓x2+y2=4.
(1)若過(guò)點(diǎn)A的圓的切線只有一條,求a的值及切線方程;
(2)若過(guò)點(diǎn)A且在兩坐標(biāo)軸上截距相等的直線與圓相切,求切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案