精英家教網 > 高中數學 > 題目詳情
橢圓的焦點分別為,點在橢圓上,如果線段的中點在軸上,那么               。

試題分析:依題意,可求得a=2,b=,c=3,設P的坐標為(x,y),由線段PF1的中點在y軸上,可求得P(3,±),繼而可求得|PF1|與|PF2|,利用余弦定理即可求得答案.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知是橢圓的兩個焦點,為坐標原點,點在橢圓上,且,⊙是以為直徑的圓,直線與⊙相切,并且與橢圓交于不同的兩點

(1)求橢圓的標準方程;
(2)當,且滿足時,求弦長的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上且過點,離心率是
(1)求橢圓的標準方程;
(2)直線過點且與橢圓交于,兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知點、,若動點滿足
(1)求動點的軌跡曲線的方程;
(2)在曲線上求一點,使點到直線:的距離最。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線的焦點為橢圓的右焦點,且橢圓的長軸長為4,M、N是橢圓上的的動點.
(1)求橢圓標準方程;
(2)設動點滿足:,直線的斜率之積為,證明:存在定點使
為定值,并求出的坐標;
(3)若在第一象限,且點關于原點對稱,垂直于軸于點,連接 并延長交橢圓于點,記直線的斜率分別為,證明:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設F1,F2是橢圓E:+=1(a>b>0)的左、右焦點,P為直線x=上一點,△F2PF1是底角為30°的等腰三角形,則E的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知方程=1表示焦點在y軸上的橢圓,則實數k的取值范圍是(  )
A.B.(1,+∞)C.(1,2)D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點P在定圓O的圓內或圓周上,動圓C過點P與定圓O相切,則動圓C的圓心軌跡可能是(  )
A.圓或橢圓或雙曲線
B.兩條射線或圓或拋物線
C.兩條射線或圓或橢圓
D.橢圓或雙曲線或拋物線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓mx2+y2=1的焦點在y軸上,長軸長是短軸長的3倍,則m=    .

查看答案和解析>>

同步練習冊答案