【題目】某廠生產(chǎn)某種產(chǎn)品的固定成本(固定投入)為2 500元,已知每生產(chǎn)件這樣的產(chǎn)品需要再增加可變成本 (元),若生產(chǎn)出的產(chǎn)品都能以每件500元售出,要使利潤(rùn)最大,該廠應(yīng)生產(chǎn)多少件這種產(chǎn)品?最大利潤(rùn)是多少?

【答案】,.

【解析】試題分析:

利用題意得到利潤(rùn)函數(shù) ,結(jié)合導(dǎo)函數(shù)研究原函數(shù)可得要使利潤(rùn)最大,該廠應(yīng)生產(chǎn)60件這種產(chǎn)品,最大利潤(rùn)為9 500元.

試題解析:

設(shè)該廠生產(chǎn)x件這種產(chǎn)品利潤(rùn)為L(x)

L(x)=500x-2 500-C(x)=500x-2 500-=300xx3-2 500(x∈N)

L′(x)=300-x2=0,得x=60(件)

又當(dāng)0≤x<60時(shí),L′(x)>0,x>60時(shí),L′(x)<0

所以x=60是L(x)的極大值點(diǎn),也是最大值點(diǎn).

所以當(dāng)x=60時(shí),L(x)=9 500元.

答:要使利潤(rùn)最大,該廠應(yīng)生產(chǎn)60件這種產(chǎn)品,最大利潤(rùn)為9 500元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點(diǎn),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2) 已知點(diǎn)的極坐標(biāo)為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+1|. (Ⅰ)解不等式f(x+8)≥10﹣f(x);
(Ⅱ)若|x|>1,|y|<1,求證:f(y)<|x|f( ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=(x2﹣2ax)lnx+2ax﹣ x2 , 其中a∈R.
(1)若a=0,且曲線f(x)在x=t處的切線l過(guò)原點(diǎn),求直線l的方程;
(2)求f(x)的極值;
(3)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),證明f(x1)+f(x2)< a2+3a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的S值為(  )

A.2
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖的程序框圖,如果輸入的a=﹣1,則輸出的S=( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b>0,a3+b3=2,證明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的程序框圖中,若輸入的m=98,n=63,則輸出的結(jié)果為(
A.9
B.8
C.7
D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案