【題目】如圖所示是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖像,只要將的圖象上所有的點(diǎn) ( )
A. 向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變
B. 向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變
C. 向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變
D. 向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變
【答案】D
【解析】
先根據(jù)函數(shù)的周期和振幅確定w和A的值,再代入特殊點(diǎn)可確定φ的一個(gè)值,進(jìn)而得到函數(shù)的解析式,再進(jìn)行平移變換即可.
由圖象可知函數(shù)的周期為π,振幅為1,
所以函數(shù)的表達(dá)式可以是y=sin(2x+φ).
代入(﹣,0)可得φ的一個(gè)值為,
故圖象中函數(shù)的一個(gè)表達(dá)式是y=sin(2x+),
所以只需將y=cos(x﹣)=sinx(x∈R)的圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列幾個(gè)命題
①方程有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③命題“若,則”的否命題為“若,則”;
④命題“,使得”的否定是“,都有”;
⑤“”是“”的充分不必要條件.
正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,且a3 , a5 , a15成等比數(shù)列,若a1=3,Sn為數(shù)列an的前n項(xiàng)和,則anSn的最小值為( )
A.0
B.﹣3
C.﹣20
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)?/span>(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù),且在定義域上單調(diào)遞減,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù), .
(1)求的單調(diào)區(qū)間與極值;
(2)求證:當(dāng)且時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面是菱形的四棱錐P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,點(diǎn)E為棱PB的中點(diǎn),點(diǎn)F在棱AD上,平面CEF與PA交于點(diǎn)K,且PA=AB=3,AF=2,則點(diǎn)K到平面PBD的距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年6月22日“國(guó)際教育信息化大會(huì)”在山東青島開幕.為了解哪些人更關(guān)注“國(guó)際教育信息化大會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15—75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: .把年齡落在區(qū)間自和 內(nèi)的人分別稱為“青少年”和“中老年”.
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年 | 15 | ||
中老年 | |||
合計(jì) | 50 | 50 | 100 |
(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);
(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國(guó)際教育信息化大會(huì)”;
臨界值表:
附:參考公式
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用部分自然數(shù)構(gòu)造如圖的數(shù)表:用表示第行第個(gè)數(shù),使得,每行中的其他各數(shù)分別等于其“肩膀”上的兩個(gè)數(shù)之和,設(shè)第行中的各數(shù)之和為.
已知,求的值;
令,證明:是等比數(shù)列,并求出的通項(xiàng)公式;
數(shù)列中是否存在不同的三項(xiàng)恰好成等差數(shù)列?若存在,求出的關(guān)系,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為 ( )的離心率為 ,圓的方程為 ,若橢圓與圓 相交于 , 兩點(diǎn),且線段 恰好為圓 的直徑.
(1)求直線 的方程;
(2)求橢圓 的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com