4.復(fù)數(shù)(1+2i)i的實(shí)部為-2.

分析 利用復(fù)數(shù)的運(yùn)算法則化簡為a+bi的形式,然后找出實(shí)部;注意i2=-1.

解答 解:(1+2i)i=i+2i2=-2+i,所以此復(fù)數(shù)的實(shí)部為-2;
故答案為:-2.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算以及復(fù)數(shù)的認(rèn)識;注意i2=-1.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足:a1∈N*,a1≤36,且an+1=$\left\{\begin{array}{l}{2{a}_{n},}&{{a}_{n}≤18}\\{2{a}_{n}-36,}&{{a}_{n>18}}\end{array}\right.$(n=1,2,…),記集合M={an|n∈N*}.
(Ⅰ)若a1=6,寫出集合M的所有元素;
(Ⅱ)如集合M存在一個元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
(Ⅲ)求集合M的元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={1,2,3},B={2,3},則( 。
A.A=BB.A∩B=∅C.A$\stackrel{?}{≠}$BD.B$\stackrel{?}{≠}$A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=$\frac{{3{x^2}+ax}}{e^x}$(a∈R)
(Ⅰ)若f(x)在x=0處取得極值,確定a的值,并求此時曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若f(x)在[3,+∞)上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若tanα=$\frac{1}{3}$,tan(α+β)=$\frac{1}{2}$,則tanβ=( 。
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{5}{7}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}滿足a3=2,前3項(xiàng)和S3=$\frac{9}{2}$.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某學(xué)校為了了解三年級、六年級、九年級這三個年級之間的學(xué)生視力是否存在顯著差異,擬從這三個年級中按人數(shù)比例抽取部分學(xué)生進(jìn)行調(diào)查,則最合理的抽樣方法是(  )
A.抽簽法B.系統(tǒng)抽樣法C.分層抽樣法D.隨機(jī)數(shù)法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.觀察下列等式:
1-$\frac{1}{2}$=$\frac{1}{2}$
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{1}{3}$+$\frac{1}{4}$
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$

據(jù)此規(guī)律,第n個等式可為$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}$+…+$\frac{1}{2n-1}-\frac{1}{2n}$=$\frac{1}{n+1}+\frac{1}{n+2}$+…+$\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個二元碼是由0和1組成的數(shù)字串${x_1}{x_2}…{x_n}({n∈{N^*}})$,其中xk(k=1,2,…,n)稱為第k位碼元,二元碼是通信中常用的碼,但在通信過程中有時會發(fā)生碼元錯誤(即碼元由0變?yōu)?,或者由1變?yōu)?)
已知某種二元碼x1x2…x7的碼元滿足如下校驗(yàn)方程組:$\left\{\begin{array}{l}{x_4}⊕{x_5}⊕{x_6}⊕{x_7}=0\\{x_2}⊕{x_3}⊕{x_6}⊕{x_7}=0\\{x_1}⊕{x_3}⊕{x_5}⊕{x_7}=0\end{array}\right.$
其中運(yùn)算⊕定義為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
現(xiàn)已知一個這種二元碼在通信過程中僅在第k位發(fā)生碼元錯誤后變成了1101101,那么利用上述校驗(yàn)方程組可判定k等于5.

查看答案和解析>>

同步練習(xí)冊答案