【題目】函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當(dāng)x= 時(shí),函數(shù)f(x)取得最小值,則下列結(jié)論正確的是(
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)

【答案】A
【解析】解:依題意得,函數(shù)f(x)的周期為π,

∵ω>0,

∴ω= =2.

又∵當(dāng)x= 時(shí),函數(shù)f(x)取得最小值,

∴2× +φ=2kπ+ ,k∈Z,可解得:φ=2kπ+ ,k∈Z,

∴f(x)=Asin(2x+2kπ+ )=Asin(2x+ ).

∴f(﹣2)=Asin(﹣4+ )=Asin( ﹣4+2π)>0.

f(2)=Asin(4+ )<0,

f(0)=Asin =Asin >0,

又∵ ﹣4+2π> ,而f(x)=Asinx在區(qū)間( )是單調(diào)遞減的,

∴f(2)<f(﹣2)<f(0).

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+(2a﹣1)x﹣lnx,a∈R.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線經(jīng)過(guò)點(diǎn)(2,11),求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間(2,3)上單調(diào),求實(shí)數(shù)a的取值范圍;
(3)設(shè) ,若對(duì)x1∈(0,+∞),x2∈[0,π],使得f(x1)+g(x2)≥2成立,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是拋物線x2=4y上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影是Q,點(diǎn)A(8,7),則|PA|+|PQ|的最小值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)U=R,A={x|y=x },B={y|y=﹣x2},則A∩(UB)=( )
A.
B.R
C.{x|x>0}
D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對(duì)稱.
(1)求證:f(x)是周期為4的周期函數(shù);
(2)若f(x)= (0<x≤1),求x∈[﹣5,﹣4]時(shí),函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點(diǎn)的縱坐標(biāo)為2,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 滿足對(duì)任意x1≠x2 , 都有 <0成立,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】來(lái)自某校一班和二班的共計(jì)9名學(xué)生志愿服務(wù)者被隨機(jī)平均分配到運(yùn)送礦泉水、清掃衛(wèi)生、維持秩序這三個(gè)崗位服務(wù),且運(yùn)送礦泉水崗位至少有一名一班志愿者的概率是
(1)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;
(2)設(shè)隨機(jī)變量X為在維持秩序崗位服務(wù)的一班的志愿者的人數(shù),求X分布列及期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案