在△ABC中,角A,B,C所對的邊分別為a,b,c,向量
m
=(cosBcosC,sinBsinC-
3
2
),
n
=(-1,1)且
m
n

(Ⅰ)求A的大小;
(Ⅱ)若a=1,B=45°,求△ABC的面積.
考點:正弦定理,平面向量的綜合題
專題:解三角形
分析:(Ⅰ)先根據(jù)向量垂直建立等式求得cosA的值,進而求得A.
(Ⅱ)先利用兩角和公式求得sinC的值,進而利用正弦定理求得c,最后利用三角形面積公式求得答案.
解答: 解:(Ⅰ)∵
m
n
,
∴-cosBcosC+sinBsinC-
3
2
=0,即cosBcosC-sinBsinC=cos(B+C)=-cosA=-
3
2
,
∴A=30°.
(Ⅱ)sinC=sin(18°-A-B)=sin(30°+45°)=sin30°cos45°+cos30°sin45°=
1
2
×
2
2
+
3
2
×
2
2
=
6
+
2
4
,
由正弦定理知c=
asinC
sinA
=
sin105°•1
sin30°
=
6
+
2
2
,
∴S=
1
2
acsinB=
1
2
×1×
6
+
2
2
=
3
+1
4
點評:本題主要考查了正弦定理的應用,三角函數(shù)恒等變換的應用,平面向量的基礎(chǔ)知識.綜合考查了學生運用基礎(chǔ)知識的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

有以下四個命題:
①若
1
x
=
1
y
,則x=y.
②若lgx有意義,則x>0.
③若x=y,則
x
=
y

④若x>y,則 x2<y2
則是真命題的序號為(  )
A、①②B、①③C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩位同學各有3張卡片,現(xiàn)以投擲均勻硬幣的形式進行游戲,當出現(xiàn)正面朝上時甲贏得乙一張卡片,否則乙贏得甲一張卡片.規(guī)定擲硬幣的次數(shù)達6次時,或在此前某人已贏得所有卡片時游戲終止.設X表示游戲終止時擲硬幣的次數(shù).
(1)求第三次擲硬幣后甲恰有4張卡片的概率;
(2)求X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠DAB=90°,AB∥CD,AD=CD=2AB=2,E,F(xiàn)分別是PC,CD的中點.
(Ⅰ)證明:CD⊥平面BEF;
(Ⅱ)設PA=k•AB,且二面角E-BD-C為60°,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3+ax2-a2x-1,二次函數(shù)g(x)=ax2-x-1,其中常數(shù)a∈R.
(1)若函數(shù)f(x)與g(x)在區(qū)間(a-2,a)內(nèi)均為增函數(shù),求實數(shù)a的取值范圍;
(2)當函數(shù)y=f(x)與y=g(x)的圖象只有一個公共點且g(x)存在最大值時,記g(x)的最大值為h(a),求函數(shù)h(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=
n2+n
2
,n∈N*
(1)求a1
(2)求數(shù)列{an}的通項公式;
(3)設bn=2 an+(-1)nan,求數(shù)列{bn}的前2n項的和T2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2

(1)如圖是用“五點法”畫函數(shù)f(x)簡圖的列表,試根據(jù)表中數(shù)據(jù)求出函數(shù)f(x)的表達式;
(2)填寫表中空格數(shù)據(jù),并根據(jù)列表在所給的直角坐標系中,畫出函數(shù)f(x)在一個周期內(nèi)的簡圖.
ωx+φ0
π
2
π
2
x37
y6-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
x
+alnx(a為參數(shù)).
(1)若a=1,求函數(shù)f(x)單調(diào)區(qū)間;
(2)當x∈(0,e]時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A(
2
2
,
2
2
),B(-
2
2
,
2
2
),C(-
2
2
,-
2
2
),D(
2
2
,-
2
2
),從這4點中隨機取2點.
(1)求這兩點與原點O(0,0)共線的概率;
(2)求這兩點與原點O(0,0)恰好構(gòu)成直角三角形的概率.

查看答案和解析>>

同步練習冊答案