已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當點(0,2)到直線l2的距離最短時,求直線l2的方程.
(1) x2=2y(x≠0)   (2) x-y-1=0或x+y+1=
(1)設(shè)點P的坐標為(x,y),則點Q的坐標為(x,-2).
∵OP⊥OQ,∴當x=0時,P,O,Q三點共線,不符合題意,故x≠0.當x≠0時,得kOP·kOQ=-1,即·=-1,化簡得x2=2y,
∴曲線C的方程為x2=2y(x≠0).
(2)∵直線l2與曲線C相切,∴直線l2的斜率存在.
設(shè)直線l2的方程為y=kx+b,
得x2-2kx-2b=0.
∵直線l2與曲線C相切,
∴Δ=4k2+8b=0,即b=-.
點(0,2)到直線l2的距離
d==·
=(+)
×2
=.
當且僅當=,即k=±時,等號成立.此時b=-1.
∴直線l2的方程為x-y-1=0或x+y+1=0.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點與點M(x,y)的距離的最小值為m,點F(0,1)與點M(x,y)的距離為n.
(1)求圓C的圓心軌跡L的方程.
(2)求滿足條件m=n的點M的軌跡Q的方程.
(3)在(2)的條件下,試探究軌跡Q上是否存在點B(x1,y1),使得過點B的切線與兩坐標軸圍成的三角形的面積等于.若存在,請求出點B的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),).
(1)化曲線的極坐標方程為直角坐標方程;
(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.

(1)求拋物線C的標準方程;
(2)求過點F,且與直線OA垂直的直線的方程;
(3)設(shè)過點M(m,0)(m>0)的直線交拋物線C于D、E兩點,ME=2DM,記D和E兩點間的距離為f(m),求f(m)關(guān)于m的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,拋物線C1:x2=4y,C2:x2=-2py(p>0).點M(x0,y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O).當x0=1-時,切線MA的斜率為-.

(1)求p的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)拋物線Cy2=2px(p>0)的焦點為F,點MC上,|MF|=5.若以MF為直徑的圓過點(0,2),則C的方程為(  )
A.y2=4xy2=8xB.y2=2xy2=8x
C.y2=4xy2=16xD.y2=2xy2=16x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線y=k(x+1)與拋物線C:y2=4x相交于A,B兩點,F為拋物線C的焦點,若|FA|=2|FB|,則k=(  )
A.±B.±
C.±D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以x軸為對稱軸,原點為頂點的拋物線上的一點P(1,m)到焦點的距離為3,則其方程是
A.y=4x2B.y=8x2      C.y2=4x          D.y2=8x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)拋物線的頂點在原點,準線方程為x=-.
(1)求拋物線的標準方程;
(2)若點P是拋物線上的動點,點P在y軸上的射影是Q,點M,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請說明理由;
(3)過拋物線焦點F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

同步練習冊答案