【題目】已知橢圓E: + =1(a>b>0)的右焦點為F,短軸的一個端點為M,直線l:3x﹣4y=0交橢圓E于A,B兩點,若|AF|+|BF|=4,點M到直線l的距離不小于 ,則橢圓E的離心率的取值范圍是( )
A.(0, ]
B.(0, ]
C.[ ,1)
D.[ ,1)

【答案】A
【解析】解:如圖所示,設(shè)F′為橢圓的左焦點,連接AF′,BF′,則四邊形AFBF′是平行四邊形,

∴4=|AF|+|BF|=|AF′|+|AF|=2a,∴a=2.

取M(0,b),∵點M到直線l的距離不小于 ,∴ ,解得b≥1.

∴e= = =

∴橢圓E的離心率的取值范圍是

故答案為:A.

利用橢圓的定義可得a=2,再根據(jù)點到直線的距離公式得到, 解得b≥1.進而e= =,故得離心率的取值范圍。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體 中, 分別為 的中點.

(1)求證:平面 ⊥平面 ;
(2)當點 上運動時,是否都有 平面 ,證明你的結(jié)論;
(3)若 的中點,試判斷 與平面 是否垂直?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)Sn為數(shù)列{an}的前n項和,a1=1,Sn=2Sn1+n﹣2(n≥2),則a2017等于( )
A.22016﹣1
B.22016+1
C.22017﹣1
D.22017+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校田徑隊共有男運動員45人,女運動員36人.若采用分層抽樣的方法在全體運動員中抽取18人進行體質(zhì)測試,則抽到的女運動員人數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}的各項均為正數(shù),且a2=6,a3+a4=72.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an﹣n(n∈N*),求數(shù)列{bn}的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,點D是AB的中點.求證:

(1)AC⊥BC1
(2)AC1∥平面B1CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:kx﹣y+1+2k=0(k∈R).
(1)證明:直線l過定點;
(2)若直線l不經(jīng)過第四象限,求k的取值范圍;
(3)若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設(shè)△AOB的面積為S,求S的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,f′(x)是f(x)的導函數(shù),則不等式(x﹣1)f′(x)<0的解集為(
A.(﹣∞, )∪(1,2)
B.(﹣1,1)∪(1,3)
C.(﹣1, )∪(3,+∞)
D.(﹣∞,﹣1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是計算1 的值的程序框圖,則圖中①、②處應(yīng)填寫的語句分別是( )

A.n=n+2,i>10?
B.n=n+2,i≥10?
C.n=n+1,i>10?
D.n=n+1,i≥10?

查看答案和解析>>

同步練習冊答案