若不等式x2+ax+b<0的解集是{x|-1<x<2},求不等式ax2+bx+3<0的解集.
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:由二次不等式和二次方程的關(guān)系可得a和b的值,解此時(shí)的一元二次不等式即可.
解答: 解:∵不等式x2+ax+b<0的解集是{x|-1<x<2},
∴-1和2是相應(yīng)方程x2+ax+b=0的兩根,
∴-1+2=-a,-1×2=b,即a=-1,b=-2,
∴不等式ax2+bx+3<0可化為x2+2x-3>0
分解因式可得(x-1)(x+3)>0
解得x<-3或x>1
∴不等式ax2+bx+3<0的解集為:{x|x<-3或x>1}
點(diǎn)評(píng):本題考查一元二次不等式的解法,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
3
ax3+(a-1)bx2-2x+1,a∈R.
(1)當(dāng)b=1時(shí),討論函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若a=2且函數(shù)y=f(x)在(1,2)上存在增區(qū)間,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=
x
(x-a).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求平方值小于1000的最大正整數(shù),寫(xiě)出一個(gè)算法的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2在點(diǎn)(2,f(2))處的切線方程為6x+3y-10=0,且對(duì)任意的x∈[0,+∞),f′(x)≤kln(x+1)恒成立.
(1)求a,b的值;
(2)求實(shí)數(shù)k的最小值;
(3)證明:1+
1
2
+
1
3
+…+
1
n
<ln(n+1)+2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2x-3
(1)指出圖象開(kāi)口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
(2)畫(huà)出函數(shù)圖象,并說(shuō)明圖象是由f(x)=x2經(jīng)過(guò)怎樣的平移得到;
(3)求f(2)、f(
1
x
);
(4)判斷函數(shù)f(x)在(-∞,-1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F(xiàn)分別為邊AD和BC上的點(diǎn),且EF∥AB,AD=2AE=2AB=4FC=4.將四邊形EFCD沿EF折起成如圖2的位置,使平面EFCD和平面ABEF所成二面角的大小為60°,
(Ⅰ)求證:直線BC⊥平面CDEF;
(Ⅱ)求二面角C-BD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知a1=2,且對(duì)任意的正整數(shù)n,m,都有an+m=an+am
(Ⅰ)求出a2,a3,a4;
(Ⅱ)猜想數(shù)列{an}的通項(xiàng)公式an,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)三棱錐的三視圖都是全等的等腰直角三角形,且直角邊長(zhǎng)為1,則該幾何體的體積=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案