【題目】已知橢圓的兩個焦點和短軸的兩個頂點構成的四邊形是一個正方形,且其周長為.

Ⅰ)求橢圓的方程;

Ⅱ)設過點的直線與橢圓相交于兩點,關于原點的對稱點為,若點總在以線段為直徑的圓內,的取值范圍.

【答案】12

【解析】試題分析:(I)由題意列出方程組求出 ,由此能求出橢圓的方程.(Ⅱ)當直線的斜率不存在時, 的方程為 ,點B在橢圓內,由,得,由此利用根的判別式、韋達定理、弦長公式、由此能求出的取值范圍.

試題解析:I)解:由題意,得: 又因為

解得,所以橢圓C的方程為.

II)當直線的斜率不存在時,由題意知的方程為x=0,

此時EF為橢圓的上下頂點,且

因為點總在以線段為直徑的圓內,且

所以,故點B在橢圓內.

當直線的斜率存在時,設的方程為.

由方程組,

因為點B在橢圓內,

所以直線與橢圓C有兩個公共點,即.

,則.

EF的中點,

所以.所以,

因為點D總在以線段EF為直徑的圓內,所以對于恒成立.

所以.

化簡,得,整理,得,

(當且僅當k=0時等號成立)所以,

m>0,得.綜上,m的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本題分)

已知定義在上的兩個函數(shù), 圖象有公共點,且在公共點處的切線相同.

)用表示

)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)若的極值點的值;

)若單調遞增,的取值范圍

)當,方程有實數(shù)根的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)求函數(shù)的單調增區(qū)間;

(2)當時,記,是否存在整數(shù),使得關于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一個動圓與兩個定圓均相切,其圓心的軌跡為曲線C.

(1) 求曲線C的方程;

(2) 過點F()做兩條可相垂直的直線,設與曲線C交于A,B兩點, 與曲線 C交于C,D兩點,線段AC,BD分別與直線交于M,M,N兩點。求證|MF|:|NF|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了響應我市“創(chuàng)建宜居港城,建設美麗莆田”,某環(huán)保部門開展以“關愛木蘭溪,保護母親河”為主題的環(huán)保宣傳活動,將木蘭溪流經(jīng)市區(qū)河段分成段,并組織青年干部職工對每一段的南、北兩岸進行環(huán)保綜合測評,得到分值數(shù)據(jù)如下表:

南岸

77

92

84

86

74

76

81

71

85

87

北岸

72

87

78

83

83

85

75

89

90

95

(Ⅰ)記評分在以上(包括)為優(yōu)良,從中任取一段,求在同一段中兩岸環(huán)保評分均為優(yōu)良的概率;

(Ⅱ)根據(jù)表中數(shù)據(jù)完成下面莖葉圖;

)分別估計兩岸分值的中位數(shù),并計算它們的平均值,試從計算結果分析兩岸環(huán)保情況,哪邊保護更好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點直線交橢圓于點.

1求橢圓的標準方程;

2為等腰三角形,求點的坐標;

3,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)sinωxcosωxcos2ωx (ω0),經(jīng)化簡后利用“五點法”畫其在某一周期內的圖象時,列表并填入的部分數(shù)據(jù)如下表:

x

f(x)

0

1

0

1

0

(1)請直接寫出①處應填的值,并求函數(shù)f(x)在區(qū)間上的值域;

(2)ABC的內角A,B,C所對的邊分別為ab,c,已知f(A)1bc4,a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講](10分)

已知函數(shù)f(x)=2|x-2|+3|x+3|.

(Ⅰ)解不等式:f(x)>15;

(Ⅱ)若函數(shù)f(x)的最小值為m,正實數(shù)a,b滿足4a+25bm,求的最小值,并求出此時a,b的大。

查看答案和解析>>

同步練習冊答案