【題目】在平面直角坐標系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為

【答案】y=± x
【解析】解:把x2=2py(p>0)代入雙曲線 =1(a>0,b>0),
可得:a2y2﹣2pb2y+a2b2=0,
∴yA+yB=
∵|AF|+|BF|=4|OF|,∴yA+yB+2× =4×
=p,
=
∴該雙曲線的漸近線方程為:y=± x.
故答案為:y=± x.
把x2=2py(p>0)代入雙曲線 =1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根與系數(shù)的關系、拋物線的定義及其性質即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圖甲中的圖象對應的函數(shù)y=f(x),則圖乙中的圖象對應的函數(shù)在下列給出的四式中只可能是( 。

A.y=f(|x|)
B.y=|f(x)|
C.y=f(﹣|x|)
D.y=﹣f(|x|)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的兩個頂點分別為A(2,0),B(2,0),焦點在x軸上,離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)點Dx軸上一點,過Dx軸的垂線交橢圓C于不同的兩點M,N,過DAM的垂線交BN于點E.求證:△BDE與△BDN的面積之比為4:5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在對人們的休閑方式的一次調查中,共調查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.

(1)根據以上數(shù)據建立一個2×2的列聯(lián)表;

(2)根據所給的獨立檢驗臨界值表,你最多能有多少把握認為性別與休閑方式有關系?附:獨立檢驗臨界值表

P(K2k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列各等式(i為虛數(shù)單位):

(cos 1+isin 1)(cos 2+isin 2)=cos 3+isin 3;

(cos 3+isin 3)(cos 5+isin 5)=cos 8+isin 8;

(cos 4+isin 4)(cos 7+isin 7)=cos 11+isin 11;

(cos 6+isin 6)(cos 6+isin 6)=cos 12+isin 12.

f(x)=cos x+isin x

猜想出一個用f (x)表示的反映一般規(guī)律的等式,并證明其正確性;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1 , A2 , A3 , A4 , A5 , A6和4名女志愿者B1 , B2 , B3 , B4 , 從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.(12分)
(Ⅰ)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率.
(Ⅱ)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某書店共有韓寒的圖書6種,其中價格為25元的有2種,18元的有3種,16元的有1種.書店若把這6種韓寒的圖書打包出售,據統(tǒng)計每套的售價與每天的銷售數(shù)量如下表所示:

售價x/元

105

108

110

112

銷售數(shù)量y/套

40

30

25

15

(1)根據上表,利用最小二乘法得到回歸直線方程,求;

(2)若售價為100元,則每天銷售的套數(shù)約為多少(結果保留到整數(shù))?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解籃球愛好者小張的投籃命中率與打籃球時間之間的關系,下表記錄了小張某月1號到5號每天打籃球時間(單位:小時)與當天投籃命中率之間的關系:

時間

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4


(1)求小張這天的平均投籃命中率;

(2)利用所給數(shù)據求小張每天打籃球時間(單位:小時)與當天投籃命中率之間的線性回歸方程;(參考公式:

(3)用線性回歸分析的方法,預測小李該月號打小時籃球的投籃命中率.

查看答案和解析>>

同步練習冊答案