已知f(x)=x3+x,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,則f(a)+f(b)+f(c)的值( )
A.一定大于0 B.一定等于0 C.一定小于0 D.正負(fù)都有可能
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知f(x)=x3-ax在[1,+∞)上是單調(diào)增函數(shù),則a的最大值是( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知f(x)=x3+x,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,則f(a)+f(b)+f(c)的值( )
A.一定大于0 B.一定等于0 C.一定小于0 D.正負(fù)都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修1單調(diào)性與最大(。┲稻毩(xí)卷(二)(解析版) 題型:解答題
已知f(x)=x3+x(x∈R),
(1)判斷f(x)在(-∞,+∞)上的單調(diào)性,并證明;
(2)求證:滿足f(x)=a(a為常數(shù))的實(shí)數(shù)x至多只有一個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山東省高二下學(xué)期3月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則a的取值范圍為( )
A、-1<a<2 B、-3<a<6 C、a<-1或a>2 D、a<-3或a>6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com