分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
由z=x+$\frac{1}{2}$y得y=-2x+2z,
平移直線y=-2x+2z,
由圖象可知當(dāng)直線y=-2x+2z經(jīng)過(guò)點(diǎn)B時(shí),直線y=-2x+2z的截距最大,
此時(shí)z最大.
由$\left\{\begin{array}{l}{y=\frac{1}{2}x}\\{x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=\frac{1}{3}}\end{array}\right.$,即B($\frac{2}{3}$,$\frac{1}{3}$)
代入目標(biāo)函數(shù)z=x+$\frac{1}{2}$y,
得z=$\frac{2}{3}$+$\frac{1}{3}$×$\frac{1}{2}$=$\frac{5}{6}$.
故答案為:$\frac{5}{6}$.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.97 | B. | 0.83 | C. | 0.32 | D. | 0.17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{4}$ | B. | $\frac{4}{7}$ | C. | $\frac{6}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com