考點(diǎn):數(shù)列的應(yīng)用
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:①利用奇函數(shù)的定義,可以判斷;
②根據(jù)函數(shù)f
1(x)在R上單調(diào)遞增,可得f
1′(x)=
3a1x2+2b1x+c1>0在R上恒成立,可得a
1>0,△<0;
③利用極值的定義,結(jié)合
===q(q>1,q為常數(shù)),可得結(jié)論;
④f
n′(x)=
3anx2+2bnx+cnx=0,若
bn2>3ancn,則方程有兩個(gè)不等的實(shí)數(shù)根,且在其左右附近導(dǎo)數(shù)的符號改變.
解答:
解:①f
n(x)+f
n(-x)=
anx3+bnx2+cnx=
-anx3+bnx2-cnx=
2bnx2≠0,
∴函數(shù)f
n(x)不是奇函數(shù);
②f
1(x)=
a1x3+b1x2+c1x,
則∵函數(shù)f
1(x)在R上單調(diào)遞增,
∴f
1′(x)=
3a1x2+2b1x+c1>0在R上恒成立,
∴a
1>0,△<0;
③若x
0是函數(shù)f
n(x)的極值點(diǎn),
則f
n′(x
0)=
3anx02+2bnx0+cnx0=0,
∵
===q(q>1,q為常數(shù)),
∴f
n+1′(x
0)=q•(
3anx02+2bnx0+cnx0)=0,
∴x
0也是函數(shù)f
n+1(x)的極值點(diǎn);
④f
n′(x)=
3anx2+2bnx+cnx=0,若
bn2>3ancn,
則方程有兩個(gè)不等的實(shí)數(shù)根,且在其左右附近導(dǎo)數(shù)的符號改變,
∴函數(shù)f
n(x)在R上有極值.
綜上可知,②③④正確.
故選B.
點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查數(shù)列知識,考查函數(shù)的極值,考查學(xué)生分析解決問題的能力,屬于中檔題.