如圖,正方形ABCD內(nèi)接于橢圓=1(a>b>0),且它的四條邊與坐標(biāo)軸平行,正方形MNPQ的頂點(diǎn)M、N在橢圓上,頂點(diǎn)P、Q在正方形的邊AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的邊長(zhǎng)為4,且與y軸交于E、F兩點(diǎn),正方形MNPQ的邊長(zhǎng)為2.
①求證:直線AM與△ABE的外接圓相切;
②求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.
(1)①見解析②=1(2)見解析
(1)證明:①依題意:A(2,2),M(4,1),E(0,-2),∴=(2,-1),=(-2,-4),∴·=0,∴AM⊥AE.
∵AE為Rt△ABE外接圓直徑,∴直線AM與△ABE的外接圓相切.
②解:由解得橢圓標(biāo)準(zhǔn)方程為=1.
(2)證明:設(shè)正方形ABCD的邊長(zhǎng)為2s,正方形MNPQ的邊長(zhǎng)為2t,則A(s,s),M(s+2t,t),代入橢圓方程=1,得 
∴e2=1-.∵k=,∴2e2-k=2為定值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓=1(a>b>0)的離心率為,短軸的一個(gè)端點(diǎn)為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點(diǎn)A、B.
(1)若AB=,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過點(diǎn)M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)P為共焦點(diǎn)的橢圓和雙曲線的一個(gè)交點(diǎn),、分別是它們的左右焦點(diǎn).設(shè)橢圓離心率為,雙曲線離心率為,若,則(    )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若兩曲線在交點(diǎn)P處的切線互相垂直,則稱該兩曲線在點(diǎn)P處正交,設(shè)橢圓與雙曲線在交點(diǎn)處正交,則橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線C與橢圓=1有相同的焦點(diǎn),直線y=x為C的一條漸近線.求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,動(dòng)點(diǎn)M為右準(zhǔn)線上一點(diǎn)(異于右準(zhǔn)線與x軸的交點(diǎn)),設(shè)線段FM交橢圓C于點(diǎn)P,已知橢圓C的離心率為,點(diǎn)M的橫坐標(biāo)為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1:+=1(a>b>0)的右頂點(diǎn)為A(1,0),過C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為1.

(1)求橢圓C1的方程;
(2)設(shè)點(diǎn)P在拋物線C2:y=x2+h(h∈R)上,C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時(shí),求h的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程=1表示橢圓,則k的取值范圍是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案