若兩曲線在交點P處的切線互相垂直,則稱該兩曲線在點P處正交,設(shè)橢圓與雙曲線在交點處正交,則橢圓的離心率為(  )
A.B.C.D.
C

試題分析:由已知得,代入中,得.
不妨設(shè)在第一象限,則.
將橢圓變形為,,故橢圓在P處的切線的斜率,
將雙曲線變形為,,故雙曲線在P處的切線的斜率,
,將代入得,,又∵,∴,
.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦距為,過右焦點和短軸一個端點的直線的斜率為,為坐標原點.
(1)求橢圓的方程.
(2)設(shè)斜率為的直線相交于、兩點,記面積的最大值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點與上頂點,直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點,若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點,且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩焦點在軸上, 且兩焦點與短軸的一個頂點的連線構(gòu)成斜邊長為2的等腰直角三角形
(1)求橢圓的方程;
(2)過點的動直線交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q?若存在求出點Q的坐標;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD內(nèi)接于橢圓=1(a>b>0),且它的四條邊與坐標軸平行,正方形MNPQ的頂點M、N在橢圓上,頂點P、Q在正方形的邊AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的邊長為4,且與y軸交于E、F兩點,正方形MNPQ的邊長為2.
①求證:直線AM與△ABE的外接圓相切;
②求橢圓的標準方程;
(2)設(shè)橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,F(xiàn)為橢圓的右焦點,M、N兩點在橢圓C上,且=λ(λ>0),定點A(-4,0).
(1)求證:當(dāng)λ=1時,
(2)若當(dāng)λ=1時,有·,求橢圓C的方程..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線D的頂點是橢圓C:=1的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)過橢圓C右頂點A的直線l交拋物線D于M、N兩點.
①若直線l的斜率為1,求MN的長;
②是否存在垂直于x軸的直線m被以MA為直徑的圓E所截得的弦長為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)分別為橢圓的左、右焦點,點在橢圓上,若,則點的坐標是__________

查看答案和解析>>

同步練習(xí)冊答案