設(shè)由正數(shù)組成的等比數(shù)列,公比q=2,且a1a2…a30=230,則a3a6a9…a30等于(  )
A、210
B、215
C、216
D、220
考點(diǎn):等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由等比數(shù)列的通項公式和已知數(shù)據(jù)可得a110,而a3a6a9…a30=a1102155,代入計算可得.
解答: 解:∵正數(shù)組成的等比數(shù)列,公比q=2,且a1a2…a30=230,
∴a130•q1+2+3+…+29=a130q435=a1302435=230,
∴a130=2-405,∴a110=2-135,
∴a3a6a9…a30=a110•q2+5+8+…+29=a1102155
=2-135•2155=220,
故選:D
點(diǎn)評:本題考查等比數(shù)列的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的是一個立體圖形的三視圖,此立體圖形的名稱為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
1
1
x
dx的值為( 。
A、1B、2C、ln2D、-ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B的對邊分別為a、b且A=2B,則
a
b
的取值范圍是( 。
A、(0,
3
B、(1,2)
C、(
1
2
,1)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面α的一個法向量為(1,2,0),平面β的一個法向量為(2,-1,0),則平面α與平面β的位置關(guān)系是( 。
A、平行B、相交但不垂直
C、垂直D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項均為正數(shù)的數(shù)列{an},{bn}滿足:an+2=2an+1+an,bn+2=bn+1+2bn(n∈N*),那么( 。
A、?n∈N*,an>bn⇒an+1>bn+1
B、?m∈N*,?n>m,an=bn
C、?m∈N*,?n>m,an>bn
D、?m∈N*,?n>m,an<bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以橢圓C:
x2
8
+
y2
5
=1的焦點(diǎn)為頂點(diǎn),以橢圓C的頂點(diǎn)為焦點(diǎn)的雙曲線的方程是( 。
A、
x2
8
-
y2
5
=1
B、
y2
5
-
x2
8
=1
C、
x2
3
-
y2
5
=1
D、
y2
5
-
x2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x的焦點(diǎn)為F,M為拋物線上的動點(diǎn),又已知點(diǎn)N(-1,0),則
|MN|
|MF|
的取值范圍是( 。
A、[1,2
2
]
B、[
2
3
]
C、[
2
,2]
D、[1,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項為a1=4,前n項和為Sn,Sn+1-3Sn-2n-4=0
(Ⅰ)求證:{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)令bn=15(an+1)+n(n∈N*),求數(shù)列{bn}前n項的和Tn

查看答案和解析>>

同步練習(xí)冊答案